Skip to main content
Log in

EFFECT OF STRUCTURE AND SURFACE STATE OF NITROGEN DOPED CARBON NANOTUBES ON THEIR FUNCTIONAL AND CATALYTIC PROPERTIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive study of nitrogen doped carbon nanotubes (N–CNTs) with nitrogen content varying from 0 at.% to 7.3 at.% is reported. A correlation is revealed between the content of pyridine-like nitrogen and the defectivity of the N–CNT bamboo-like structure. A model of graphene layer with defects containing ordered carbon vacancies and pyridine nitrogen is proposed. The model is based on a combination of experimental data obtained by powder X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy and simulation of the N–CNT structure by the use of g-C3N4 structural elements. It is shown that more than a two-fold increase of the N–CNT specific capacity in acidic and alkaline electrolytes compared to that of undoped carbon nanotubes is due to the fact that N–CNTs posses significantly better hydrophilic properties due to the defects based on pyridine-like nitrogen centers. The N–CNT efficiency as a catalyst and a palladium catalyst support in the reaction of oxidative desulfurization of dibenzothiophene is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

REFERENCES

  1. K. N. Wood, R. OHayre, and S. Pylypenko. Energy Environ. Sci., 2014, 7, 1212.

    Article  CAS  Google Scholar 

  2. O. Y. Podyacheva and Z. R. Ismagilov. Catal. Today, 2015, 249, 12.

    Article  CAS  Google Scholar 

  3. Y. Cao, S. Mao, M. Li, Y. Chen, and Y. Wang. ACS Catal., 2017, 7, 8090.

    Article  CAS  Google Scholar 

  4. D. A. Bulushev, M. Zacharska, A. S. Lisitsyn, O. Y. Podyacheva, F. S. Hage, Q. M. Ramasse, U. Bangert, and L. G. Bulusheva. ACS Catal., 2016, 6, 3442.

    Article  CAS  Google Scholar 

  5. W. Liu, Y. Chen, H. Qi, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, C. Liu, A. Wang, J. Li, and T. Zhang. Angew. Chem., Int. Ed., 2018, 57, 7071.

    Article  CAS  Google Scholar 

  6. K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai. Science, 2009, 323, 760.

    Article  CAS  PubMed  Google Scholar 

  7. O. Y. Podyacheva, A. N. Suboch, S. N. Bokova-Sirosh, A. I. Romanenko, L. S. Kibis, E. D. Obraztsova, and V. L. Kuznetsov. Phys. Status Solidi Basic Res., 2018, 255, 1700253.

    Article  CAS  Google Scholar 

  8. J. Appl. Phys., 2013, 113, 144315.

  9. E. V. Matus, A. N. Suboch, A. S. Lisitsyn, D. A. Svinsitskiy, E. Modin, A. Chuvilin, Z. R. Ismagilov, and O. Y. Podyacheva. Diamond Relat. Mater., 2019, 98, 107484.

    Article  CAS  Google Scholar 

  10. S. V. Cherepanova and S. V. Tsybulya. J. Mol. Catal., A, 2000, 158, 263.

    Article  CAS  Google Scholar 

  11. O. Y. Podyacheva, S. V. Cherepanova, A. I. Romanenko, L. S. Kibis, D. A. Svintsitskiy, A. I. Boronin, O. A. Stonkus, A. N. Suboch, A. V. Puzynin, and Z. R. Ismagilov. Carbon, 2017, 122, 475.

    Article  CAS  Google Scholar 

  12. R. Larciprete, S. Gardonio, L. Petaccia, and S. Lizzit. Carbon, 2009, 47, 2579.

    Article  CAS  Google Scholar 

  13. T. Susi, T. Pichler, and P. Ayala. Beilstein J. Nanotechnol., 2015, 6, 177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. P. Zhao, Z. Y. Chen, T. Yano, T. Ooie, M. Yoneda, and J. Sakakibara. Appl. Phys. A, 2001, 73, 97.

    Article  CAS  Google Scholar 

  15. R. Droppa, P. Hammer, A. C. M. Carvalho, M. C. dos Santos, and F. Alvarez. J. Non. Cryst. Solids, 2002, 299-302, 874.

    Article  CAS  Google Scholar 

  16. R. Larciprete, P. Lacovig, S. Gardonio, A. Baraldi, and S. Lizzit. J. Phys. Chem. C, 2012, 116, 9900.

    Article  CAS  Google Scholar 

  17. K.F. Ortega, R. Arrigo, B. Frank, R. Schlogl, and A. Trunschke. Chem. Mater., 2016, 28, 6826.

    Article  CAS  Google Scholar 

  18. J. H. Zhou, Z. J. Sui, J. Zhu, P. Li, D. Chen, Y. C. Dai, and W. K. Yuan. Carbon, 2007, 45, 785.

    Article  CAS  Google Scholar 

  19. P. Burg, P. Fydrych, D. Cagniant, G. Nanse, J. Bimer, and A. Jankowska. Carbon, 2002, 40, 1521.

    Article  CAS  Google Scholar 

  20. E.Paparazzo. J. Electron Spectrosc. Relat. Phenom., 1987, 43, 97.

  21. X. Y. Tao, X. B. Zhang, F. Y. Sun, J. P. Cheng, F. Liu, and Z. Q. Luo. Diamond Relat. Mater., 2007, 16, 425.

    Article  CAS  Google Scholar 

  22. K. Chizari, I. Janowska, M. Houlle, I. Florea, O. Ersen, T. Romero, P. Bernhardt, M. J. Ledoux, and C. Pham-Huu. Appl. Catal. A, 2010, 380, 72.

    Article  CAS  Google Scholar 

  23. L. G. Bulusheva, A. V. Okotrub, Y. V. Fedoseeva, A. G. Kurenya, I. P. Asanov, O. Y. Vilkov, A. A. Koos, and N. Grobert. Phys. Chem. Chem. Phys., 2015, 17, 23741.

    Article  CAS  PubMed  Google Scholar 

  24. E. V. Lobiak, V. R. Kuznetsova, A. A. Makarova, A. V. Okotrub, and L. G. Bulusheva. Mater. Chem. Phys., 2020, 255, 123563.

    Article  CAS  Google Scholar 

  25. M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, and H. Terrones. Appl. Phys. A, 2002, 74, 355.

    Article  CAS  Google Scholar 

  26. C. P. Ewels and M. Glerup. J. Nanosci. Nanotechnol., 2005, 5, 1345.

    Article  CAS  Google Scholar 

  27. Appl. Phys. Lett., 2000, 77, 1807.

  28. R. J. Nicholls, Z. Aslam, M. C. Sarahan, A. M. Sanchez, F. Dillon, A. A. Koos, P. D. Nellist, and N. Grobert. Phys. Chem. Chem. Phys., 2015, 17, 2137.

    Article  CAS  PubMed  Google Scholar 

  29. I. V. Mishakov, Y. I. Bauman, Yu. V. Shubin, L.S. Kibis, E.Y. Gerasimov, M.S. Meldinov, V.O. Stoyanovskii, S.V. Korenev, and A.A. Vedyagin. Catal. Today, 2020, https://doi.org/10.1016/j.cattod.2020.06.024.

  30. R. Chetty, S. Kundu, W. Xia, M. Bron, W. Schuhmann, V. Chirila, W. Brandl, T. Reinecke, and M. Muhler. Electrochim. Acta, 2009, 54, 4208.

    Article  CAS  Google Scholar 

  31. A. G. Kudashov, A. V. Okotrub, L. G. Bulusheva, I. P. Asanov, Yu. V. Shubin, N. F. Yudanov, L. I. Yudanova, V. S. Danilovich, and O. G. Abrosimov. J. Phys. Chem. B, 2004, 108, 9048.

    Article  CAS  Google Scholar 

  32. G. Liao, S. Chen, X. Quan, H. Yu, and H. Zhao. J. Mater. Chem., 2012, 22, 2721.

    Article  CAS  Google Scholar 

  33. M. J. Bojdys, J. O. Müller, M. Antonietti, and A. Thomas. Chem. Eur. J., 2008, 14, 8177.

    Article  CAS  PubMed  Google Scholar 

  34. Appl. Phys. Lett., 2012, 101, 123108.

    Article  CAS  Google Scholar 

  35. D. V. Krasnikov, S. N. Bokova-Sirosh, T. O. Tsendsuren, A. I. Romanenko, E. D. Obraztsova, V. A. Volodin, and V. L. Kuznetsov. Phys. Status Solidi B, 2018, 255, 1700255.

    Article  CAS  Google Scholar 

  36. Y. Deng, Y. Xie, K. Zoua, and X. Ji. J. Mater. Chem. A, 2016, 4, 1144.

    Article  CAS  Google Scholar 

  37. Y. H. Lee, K. H. Chang, and C. C. Hu. J. Power Sources, 2013, 227, 300.

    Article  CAS  Google Scholar 

  38. I. Kunadian, S. M. Lipka, C. R. Swartz, D. Qian, and R. Andrews. J. Electrochem. Soc., 2009, 156, K110.

    Article  CAS  Google Scholar 

  39. Z. R. Ismagilov, A. E. Shalagina, O. Yu. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, D. I. Kochubey, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, and E. N. Tkachev. Carbon, 2009, 47, 1922.

    Article  CAS  Google Scholar 

  40. D. A. Svintsitskiy, L. S. Kibis, D. A. Smirnov, A. N. Suboch, O. A. Stonkus, O. Y. Podyacheva, A. I. Boronin, and Z. R. Ismagilov. Appl. Surf. Sci., 2018, 435, 1273.

    Article  CAS  Google Scholar 

  41. K. V. Kumar, K. Preuss, Z. X. Guo, and M. M. Titirici. J. Phys. Chem. C, 2016, 120, 18167.

    Article  CAS  Google Scholar 

  42. Electrochim. Acta, 2014, 116, 118.

  43. E. O. Fedorovskaya, L. G. Bulusheva, A. G. Kurenya, I. P. Asanov, and N. A. Rudina. Electrochim. Acta, 2014, 139, 165.

    Article  CAS  Google Scholar 

  44. Y. Zhang, C. Liu, B. Wen, X. Song, and T. Li. Mater. Lett., 2011, 65, 49.

    Article  CAS  Google Scholar 

  45. Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D. S. Su, J. Wang, X. Bao, and D. Ma. Angew. Chem., Int. Ed., 2013, 52, 2109.

    Article  CAS  Google Scholar 

  46. Y. Lin, X. Pan, W. Qi, B. Zhang, and D. S. Su. J. Mater. Chem. A, 2014, 2, 12475.

    Article  CAS  Google Scholar 

  47. C. Chen, J. Zhang, B. Zhang, C. Yu, F. Peng, and D. Su. Chem. Commun., 2013, 49, 8151.

    Article  CAS  Google Scholar 

  48. K. Chizari, A. Deneuve, O. Ersen, I. Florea, Y. Liu, D. Edouard, I. Janowska, D. Begin, and C. Pham-Huu. ChemSusChem, 2012, 5, 102-108.

    Article  CAS  PubMed  Google Scholar 

  49. Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F. M. Al-Shahrani, A. A. Hajji, and O. R. Koseoglu. Catal. Rev.: Sci. Eng., 2011, 53, 199.

    Article  CAS  Google Scholar 

  50. G. Yang, H. Chen, H. Qin, and Y. Feng. Appl. Surf. Sci., 2014, 293, 299.

    Article  CAS  Google Scholar 

  51. K. Ohkubo, H. Kitaguchi, and S. Fukuzumi. J. Phys. Chem. A, 2006, 110, 11613.

    Article  CAS  PubMed  Google Scholar 

  52. J. Luo, F. Peng, H. Wang, and H. Yu. Catal. Commun., 2013, 39, 44.

    Article  CAS  Google Scholar 

  53. X. Ning, H. Yu, F. Peng, and H. Wang. J. Catal., 2015, 325, 136.

    Article  CAS  Google Scholar 

  54. X. Ning, Y. Li, B. Dong, H. Wang, H. Yu, F. Peng, and Y. Yang. J. Catal., 2017, 348, 100.

    Article  CAS  Google Scholar 

  55. A. B. Ayusheev, O. P. Taran, I. A. Seryak, O. Yu. Podyacheva, C. Descorme, M. Besson, L. S. Kibis, A. I. Boronin, A. I. Romanenko, Z. R. Ismagilov, and V. Parmon. Appl. Catal. B, 2014, 146, 177.

    Article  CAS  Google Scholar 

  56. O. Y. Podyacheva, Z. R. Ismagilov, A. I. Boronin, L. S. Kibis, E. M. Slavinskaya, A. S. Noskov, N. V. Shikina, V. A. Ushakov, and A. V. Ischenko. Catal. Today, 2012, 186, 42.

    Article  CAS  Google Scholar 

Download references

Funding

The synthesis of the samples and the study of their activity in the reaction of oxidative DBT desulfurization were funded by the Russian Science Foundation (project No. 19-13-00129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Podyacheva.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 5, pp. 827-838.https://doi.org/10.26902/JSC_id72907

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podyacheva, O.Y., Suboch, A.N., Yashnik, S.A. et al. EFFECT OF STRUCTURE AND SURFACE STATE OF NITROGEN DOPED CARBON NANOTUBES ON THEIR FUNCTIONAL AND CATALYTIC PROPERTIES. J Struct Chem 62, 771–781 (2021). https://doi.org/10.1134/S0022476621050139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621050139

Keywords

Navigation