Skip to main content
Log in

SYNTHESIS AND CRYSTAL STRUCTURE OF CsLnZnS3 (Ln = Gd, Dy)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

CsLnZnS3 (Ln = Gd, Dy) crystals are obtained by the interaction of metal sulfides in the cesium iodide melt. It is found that these compounds are isostructural, belong to the KCuZrS3 structure type, and crystallize in the space group Cmcm with the parameters a = 4.010(5) Å, b = 15.32(3) Å, c = 10.542(19) Å for CsGdZnS3 and a = 4.0106(3) Å, b = 15.2493(12) Å, c = 10.5978(8) Å for CsDyZnS3. The structures of these compounds consist of {LnS6} octahedra and {ZnS4} tetrahedra, which by sharing edges, form charged 2∞{LnZnS3} layers separated by Cs+ ions. Band gaps of these compounds are determined as 3.70 eV and 3.84 eV for CsGdZnS3 and CsDyZnS3 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. K. Mitchell and J. A. Ibers. Chem. Rev., 2002, 102, 1929. https://doi.org/10.1021/cr010319h

    Article  CAS  PubMed  Google Scholar 

  2. G. Gouget, M. Pellerin, R. Al Rahal Al Orabi, L. Pautrot-DAlençon, T. Le Mercier, and C. B. Murray. J. Am. Chem. Soc., 2021, 143, 3300. https://doi.org/10.1021/jacs.0c13433

    Article  CAS  PubMed  Google Scholar 

  3. A. R. West. Basic Solid State Chemistry. John Wiley & Sons, 1999.

  4. B. Dzhurinskii. Russ. J. Inorg. Chem., 1980, 25, 79.

  5. A. V. Ruseikina, O. V. Andreev, E. O. Galenko, and S. I. Koltsov. J. Therm. Anal. Calorim., 2017, 128, 993. https://doi.org/10.1007/s10973-016-6010-9

    Article  CAS  Google Scholar 

  6. S. A. Sunshine, D. Kang, and J. A. Ibers. J. Am. Chem. Soc., 1987, 109, 6202. https://doi.org/10.1021/ja00254a060

    Article  CAS  Google Scholar 

  7. A. C. Sutorik, J. Albritton-Thomas, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis. Chem. Mater., 1996, 8, 751. https://doi.org/10.1021/cm950438b

    Article  CAS  Google Scholar 

  8. K. Mitchell, C. L. Haynes, A. D. McFarland, R. P. Van Duyne, and J. A. Ibers. Inorg. Chem., 2002, 41, 1199. https://doi.org/10.1021/ic011200u

    Article  CAS  PubMed  Google Scholar 

  9. M. F. Mansuetto, P. M. Keane, and J. A. Ibers. J. Solid State Chem., 1992, 101, 257. https://doi.org/10.1016/0022-4596(92)90182-U

    Article  CAS  Google Scholar 

  10. K. Mitchell, F. Q. Huang, E.a.N. Caspi, A. D. McFarland, C. L. Haynes, R. C. Somers, J. D. Jorgensen, R. P. Van Duyne, and J. A. Ibers. Inorg. Chem., 2004, 43, 1082. https://doi.org/10.1021/ic030232+

    Article  CAS  PubMed  Google Scholar 

  11. J. Yao, B. Deng, L. J. Sherry, A. D. McFarland, D. E. Ellis, R. P. Van Duyne, and J. A. Ibers. Inorg. Chem., 2004, 43, 7735. https://doi.org/10.1021/ic040071p

    Article  CAS  PubMed  Google Scholar 

  12. M. Ohta, S. Hirai, H. Kato, V. V. Sokolov, and V. V. Bakovets. Materials Trans., 2009, 0906150811. https://doi.org/10.2320/matertrans.M2009060

    Article  CAS  Google Scholar 

  13. T. A. Pomelova, T. Y. Podlipskaya, N. V. Kuratieva, A. G. Cherkov, N. A. Nebogatikova, M. R. Ryzhikov, A. Huguenot, R. Gautier, and N. G. Naumov. Inorg. Chem., 2018, 57, 13594. https://doi.org/10.1021/acs.inorgchem.8b02213

    Article  CAS  PubMed  Google Scholar 

  14. Bruker AXS Inc. (2000-2012). APEX2 (Version 2012.2-0), SAINT (Version 8.18c), and SADABS (Version 2008/1). Madison, Wisconsin, USA: Bruker Advanced X-ray Solutions, 2000-2012.

  15. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  16. K. Mitchell, F. Q. Huang, A. D. McFarland, C. L. Haynes, R. C. Somers, R. P. Van Duyne, and J. A. Ibers. Inorg. Chem., 2003, 42, 4109. https://doi.org/10.1021/ic020733f

    Article  CAS  PubMed  Google Scholar 

  17. F. Q. Huang, K. Mitchell, and J. A. Ibers. Inorg. Chem., 2001, 40, 5123. https://doi.org/10.1021/ic0104353

    Article  CAS  PubMed  Google Scholar 

  18. N. O. Azarapin, V. V. Atuchin, N. G. Maximov, A. S. Aleksandrovsky, M. S. Molokeev, A. S. Oreshonkov, N. P. Shestakov, A. S. Krylov, T. M. Burkhanova, S. Mukherjee, and O. V. Andreev. Mater. Res. Bull., 2021, 140, 111314. https://doi.org/10.1016/j.materresbull.2021.111314

    Article  CAS  Google Scholar 

  19. N. O. Azarapin, A. S. Aleksandrovsky, V. V. Atuchin, T. A. Gavrilova, A. S. Krylov, M. S. Molokeev, S. Mukherjee, A. S. Oreshonkov, and O. V. Andreev. J. Alloys Compd., 2020, 832, 153134. https://doi.org/10.1016/j.jallcom.2019.153134

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (projects Nos. 121031700315-2 and 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Pomelova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 6, pp. 733-738.https://doi.org/10.26902/JSC_id92274

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.C., Kuratieva, N.V., Pomelova, T.A. et al. SYNTHESIS AND CRYSTAL STRUCTURE OF CsLnZnS3 (Ln = Gd, Dy). J Struct Chem 63, 868–873 (2022). https://doi.org/10.1134/S0022476622060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622060038

Keywords

Navigation