Skip to main content
Log in

GAS-PHASE SYNTHESIS OF NITROGEN-DOPED DIAMOND COATING USING A HIGH-VELOCITY MICROWAVE PLASMA FLOW

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Nitrogen-doped polycrystalline diamond coating is synthesized by high-velocity gas jet chemical deposition from a methane/hydrogen mixture with an addition of molecular nitrogen. The reaction mixture is activated by microwave plasma. The present work reports a comparative study of morphology, composition, and structure of nitrogen-doped and undoped diamond coatings using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure spectroscopy. It is shown that doping with nitrogen decreases the average size of diamond microcrystals and their quantity. Also, the addition of molecular nitrogen to the reaction mixture leads to the formation of higher quality diamond crystals comprising a smaller number of oxygen- and hydrogen-containing functional groups and graphite-like carbon. It is shown that the surface of the nitrogen-doped diamond coating contains ~0.6 at.% of nitrogen that exists in three chemical states and affects the hydrophilic properties of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. J. E. Field. The Properties of Natural and Synthetic Diamond. London, UK: Academic Press, 1992.

  2. T. Eisenberg and E. Schreiner. Diamonds: Properties, Synthesis and Applications. New York, USA: Nova Science, 2011.

  3. R. S. Sussmann. CVD Diamond for Electronic Devices and Sensors. Chichester, UK: Wiley, 2009.

  4. R. J. Narayan, R. D. Boehm, and A.V. Sumant. Mater. Today, 2011, 14, 154. https://doi.org/10.1533/9780857093516.1.3

    Chapter  Google Scholar 

  5. S. Koizumi, C. Nebel, and M. Nesladek. Physics and Applications of CVD Diamond. Chichester, UK: Wiley VCH, 2008.

  6. N. Yang, S. Yu, J. V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, G. M. Swain, and X. Jiang. Chem. Soc. Rev., 2019, 48, 157. https://doi.org/ 10.1039/C7CS00757D

    Article  CAS  PubMed  Google Scholar 

  7. M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn, and T. M. Lyszczarz. Appl. Phys. Lett., 1996, 68, 2294. https://doi.org/10.1063/1.116168

    Article  CAS  Google Scholar 

  8. A. Kraft. Int. J. Electrochem. Sci., 2007, 2, 355.

  9. E. Güler, Ş. Uğur, M. Güler, and G. Uğur. Bull. Mater. Sci., 2021, 44, 1. https://doi.org/10.1007/s12034-020-02288-z

    Article  CAS  Google Scholar 

  10. E. Wörner, E. Pleuler, C. Wild, and P. Koidl. Diamond Relat. Mater., 2003, 12, 744. https://doi.org/10.1016/S0925-9635(02)00274-1

    Article  Google Scholar 

  11. Y. K. Liu, P. L. Tso, D. Pradhan, I. N. Lin, M. Clark, and Y. Tzeng. Diamond Relat. Mater., 2005, 14, 2059. https://doi.org/10.1016/j.diamond.2005.06.012

    Article  CAS  Google Scholar 

  12. N. Yang, J. S. Foord, and X. Jiang. Carbon, 2016, 99, 90. https://doi.org/10.1016/j.carbon.2015.11.061

    Article  CAS  Google Scholar 

  13. X. Wang, Y. Qiao, K. Larsson, and F. Sun. Diamond Relat. Mater., 2022, 123, 108878. https://doi.org/10.1016/j.matchemphys.2021.124283

    Article  CAS  Google Scholar 

  14. S. Yamanaka, D. Takeuchi, H. Watanabe, H. Okushi, and K. Kajimura. Appl. Surf. Sci., 2000, 159/160, 567. https://doi.org/10.1016/S0169-4332(00)00104-5

    Article  CAS  Google Scholar 

  15. A. A. Emelyanov, A. K. Rebrov, and I. B. Yudin. J. Appl. Mech. Tech. Phys., 2014, 55, 270. https://doi.org/10.1134/S0021894414020096

    Article  Google Scholar 

  16. A. K. Rebrov, M. N. Andreev, T. T. Byadovskiy, K. V. Kubrak, and I. B. Yudin. Rev. Sci. Instrum., 2016, 87, 103902. https://doi.org/10.1063/1.4964704

    Article  CAS  PubMed  Google Scholar 

  17. A. K. Rebrov, A. A. Emelyanov, M. Yu. Plotnikov, N. I. Timoshenko, and I. B. Yudin. Dokl. Phys., 2020, 65, 23. https://doi.org/10.1134/S1028335820010127

    Article  CAS  Google Scholar 

  18. A. Rebrov. Diamond Relat. Mater., 2017, 72, 20. https://doi.org/10.1016/j.diamond.2016.12.014

    Article  CAS  Google Scholar 

  19. A. K. Rebrov, A. A. Emelyanov, M. Yu. Plotnikov, and I. B. Yudin. J. Appl. Mech. Tech. Phys., 2017, 58, 881. https://doi.org/10.1134/S0021894417050145

    Article  CAS  Google Scholar 

  20. Y. V. Fedoseeva, K. V. Kubrak, L. G. Bulusheva, E. A. Maksimovskiy, D. A. Smirnov, A. K. Rebrov, and A. V. Okotrub. J. Phys. Conf. Ser., 2018, 1105, 012132. https://doi.org/10.1088/1742-6596/1105/1/012132

  21. Yu. V. Fedoseeva, D. V. Gorodetskiy, K. I. Baskakova, I. P. Asanov, L. G. Bulusheva, A. A. Makarova, I. B. Yudin, M. Yu. Plotnikov, A. A. Emelyanov, A. K. Rebrov, and A. V. Okotrub. Materials, 2020, 13, 219. https://doi.org/10.3390/ma13010219

    Article  CAS  PubMed Central  Google Scholar 

  22. Y. V. Fedoseeva, D. V. Gorodetskiy, A. A. Makarova, I. B. Yudin, N. I. Timoshenko, M. Y. Plotnikov, A. A. Emelyanov, A. K. Rebrov, and A. V. Okotrub. J. Struct. Chem., 2021, 62(1), 153-162. https://doi.org/10.1134/s0022476621010182

    Article  CAS  Google Scholar 

  23. A. A. Emelyanov, V. A. Pinaev, M. Yu. Plotnikov, A. K. Rebrov, N. I. Timoshenko, and I. B. Yudin. J. Phys. D: Appl. Phys., 2022, 55, 205202. https://doi.org/10.1088/1361-6463/ac526e

    Article  Google Scholar 

  24. I. B. Yudin, A. A. Emelyanov, M. Yu. Plotnikov, A. K. Rebrov, and N. I. Timoshenko. Fullerenes, Nanotubes, Carbon Nanostruct., 2021, 30, 126. https://doi.org/10.1080/1536383X.2021.1984898

    Article  CAS  Google Scholar 

  25. N. Jiang, A. Hatta, and T. Ito. Jpn. J. Appl. Phys., 1998, 37, L1175. https://doi.org/10.1143/JJAP.37.L1175

    Article  CAS  Google Scholar 

  26. Y. Mabuchi, T. Higuchi, and V. Weihnacht. Tribol. Int., 2013, 62, 130-140. https://doi.org/10.1016/j.triboint.2013.02.007

    Article  CAS  Google Scholar 

  27. X. Rao, J. Yang, Z. Chen, Y. Yuan, Q. Chen, X. Feng, L. Qin, and Y. Zhang. Bioact. Mater., 2020, 5, 192-200. https://doi.org/10.1016/j.bioactmat.2020.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  28. S. Prawer and R. J. Nemanich. Philos. Trans. R. Soc., A, 2004, 362, 2537. https://doi.org/10.1098/rsta.2004.1451

    Article  CAS  Google Scholar 

  29. E. J. Di Liscia, F. Álvarez, E. Burgos, E. B. Halac, H. Huck, and M. Reinoso. Mater. Sci. Appl., 2013, 4, 191. https://doi.org/10.4236/msa.2013.43023

    Article  CAS  Google Scholar 

  30. S. A. Rakhaa, Y. Guojun, and C. Jianqing. J. Exp. Nanosci., 2012, 7, 378. https://doi.org/10.1080/17458080.2010.529171

    Article  CAS  Google Scholar 

  31. M. Yang, Q. Yuan, J. Gao, S. Shu, F. Chen, H. Sun, K. Nishimura, S. Wang, J. Yi, C.-T. Lin, and N. Jiang. Nanomaterials, 2019, 9, 1576. https://doi.org/10.3390/nano9111576

    Article  CAS  PubMed Central  Google Scholar 

  32. J. Fridrichová, P. Bačík, R. Škoda, and P. Antal. Acta Geol. Slovaca, 2015, 7, 11.

  33. P. Cao, W. T. Zheng, Z. Jiang, Z. Jin, Z. Mu, and C. Dong. Mater. Chem. Phys., 2001, 72, 93. https://doi.org/10.1016/S0254-0584(01)00316-9

    Article  CAS  Google Scholar 

  34. Z. Seker, H. Ozdamar, M. Esen, R. Esen, and H. Kavak. Appl. Surf. Sci., 2014, 314, 46. https://doi.org/10.1016/j.apsusc.2014.06.137

    Article  CAS  Google Scholar 

  35. Yu. V. Fedoseeva, G. A. Pozdnyakov, A. V. Okotrub, M. A. Kanygin, Yu. V. Nastaushev, O. Y. Vilkov, and L. G. Bulusheva. Appl. Surf. Sci., 2016, 385, 464. https://doi.org/10.1016/j.apsusc.2016.05.120

    Article  CAS  Google Scholar 

  36. S. L. Y. Chang, A. S. Barnard, C. Dwyer, C. B. Boothroyd, R. K. Hocking, E. Ōsawaf, and R. J. Nicholls. Nanoscale, 2016, 8, 10548. https://doi.org/10.1039/C6NR01888B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Al-Riyami, S. Ohmagari, and T. Yoshitake. Jpn. J. Appl. Phys., 2011, 50, 08JD05. https://doi.org/10.1143/JJAP.50.08JD05

    Article  Google Scholar 

  38. P. Ashtijoo, S. Bhattacherjee, R. Sutarto, Y. Hu, and Q. Yang. Surf. Coat. Technol., 2016, 308, 90. https://doi.org/10.1016/j.surfcoat.2016.06.090

    Article  CAS  Google Scholar 

  39. Y. N. Palyanov, A. F. Khokhryakov, Y. M. Borzdov, and I. N. Kupriyanov. Cryst. Growth Des., 2013, 13, 5411. https://doi.org/10.1021/cg4013476

    Article  CAS  Google Scholar 

  40. Yu. V. Fedoseeva, A. V. Okotrub, L. G. Bulusheva, E. A. Maksimovskiy, B. V. Senkovskiy, Yu. M. Borzdov, and Yu. N. Palyanov. Diamond Relat. Mater., 2016, 70, 46-51. https://doi.org/10.1016/j.diamond.2016.09.023

    Article  CAS  Google Scholar 

  41. H. Osanai, K. Nakamura, Y. Sasaki, H. Koriyama, Y. Kobayashi, Y. Enta, Y. Suzuki, M. Suemitsu, and H. Nakazawa. Thin Solid Films, 2022, 745, 139100. https://doi.org/10.1016/j.tsf.2022.139100

    Article  CAS  Google Scholar 

  42. A. Stacey, K. M. ODonnell, J.-P. Chou, A. Schenk, A. Tadich, N. Dontschuk, J. Cervenka, C. Pakes, A. Gali, A. Hoffman, and S. Prawer. Adv. Mater. Interfaces, 2015, 2, 1500079. https://doi.org/10.1002/admi.201500079

    Article  CAS  Google Scholar 

  43. I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami, T. Takaoka, M. Nishitani-Gamo, and T. Ando. Surf. Sci., 2001, 492, 315. https://doi.org/10.1016/S0039-6028(01)01430-3

    Article  CAS  Google Scholar 

  44. Yu. V. Fedoseeva, A. V. Okotrub, I. P. Asanov, D. V. Pinakov, G. N. Chekhova, V. A. Tur, P. E. Plyusnin, D. V. Vyalikh, and L. G. Bulusheva. Phys. Status Solidi B, 2014, 251, 2530. https://doi.org/10.1002/pssb.201451281

    Article  CAS  Google Scholar 

  45. L. L. Lapteva, Yu. V. Fedoseeva, P. N. Gevko, D. A. Smirnov, A. V. Guselnikov, L. G. Bulusheva, and A. V. Okotrub. J. Struct. Chem., 2017, 58(6), 1173. https://doi.org/0022-4766/17/5806-1173

  46. S. Bhattacharyya, M. Lubbe, P. R. Bressler, D. R. T. Zahn, and F. Richter. Diamond Relat. Mater., 2002, 11, 8. https://doi.org/10.1016/S0925-9635(01)00525-8

    Article  CAS  Google Scholar 

  47. L. Yu. Ostrovskaya, V. G. Ralchenko, A. P. Bolshakov, A. V. Saveliev, N. N. Dzbanovsky, and S. V. Shmegera. J. Nanosci. Nanotechnol., 2009, 9, 3665. https://doi.org/10.1166/jnn.2009.NS48

    Article  CAS  Google Scholar 

  48. L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Saveliev, and V. Zhuravlev. Diamond Relat. Mater., 2007, 16, 2109. https://doi.org/10.1016/j.diamond.2007.07.026

    Article  CAS  Google Scholar 

  49. D. Zhanga and Y. Cui. Int. J. Refract. Hard Met., 2019, 81, 36. https://doi.org/10.1016/j.ijrmhm.2019.02.017

    Article  CAS  Google Scholar 

  50. O. Sharifahmadian, F. Mahboubi, and S. Yazdani. Diamond Relat. Mater., 2019, 95, 60. https://doi.org/10.1016/j.diamond.2019.04.007

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 18-29-19069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Fedoseeva.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 7, 98811.https://doi.org/10.26902/JSC_id98811

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, Y.V., Gorodetskiy, D.V., Baskakova, K.I. et al. GAS-PHASE SYNTHESIS OF NITROGEN-DOPED DIAMOND COATING USING A HIGH-VELOCITY MICROWAVE PLASMA FLOW. J Struct Chem 63, 1170–1179 (2022). https://doi.org/10.1134/S0022476622070113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070113

Keywords

Navigation