Skip to main content
Log in

Analysis of Heterogeneous-Homogeneous Model of Oxidative Coupling of Methane Using Kinetic Scheme Reduction Procedure

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The validity of using kinetic scheme reduction procedures to compare various kinetic models as well as the values of kinetic parameters of individual steps present in the literature is analyzed. The peculiarities of the development of the gas-phase reaction block as a part of the heterogeneous-homogeneous model of the oxidative coupling of methane (OCM) are considered and approaches to the selection of kinetic parameters of elementary steps are analyzed. It has been demonstrated that kinetic models developed in accordance with the principle of “independence of kinetic parameters” can exhibit low predictive power due to existing uncertainties in the values of the parameters presented in well-known review papers and databases. In addition, the effects of the accounting of the heterogeneous reaction block and variation of the OCM reaction conditions on the results of the reduction of the detailed kinetic scheme are addressed. It has been shown that the use of reduction procedures to analyze the mechanism of complex processes is limited due to the high degree of conjugation between their individual stages and the strong dependence of kinetic constants on the parameters of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Krylov, O.V. and Arutyunov, V.S., Okislitel’nye prevrashcheniya metana (Oxidative Transformations of Methane), Moscow: Nauka, 1998.

  2. Mitchell, H.L. and Waghorne, R.H., US Patent 4 205 194, 1980.

  3. Fang, T. and Yeh, C., J. Catal., 1981, vol. 69, no. 2, p. 227.

    Article  CAS  Google Scholar 

  4. Keller, G.E. and Bhasin, M.M., J. Catal., 1982, vol. 73, no. 1, p. 9.

    Article  CAS  Google Scholar 

  5. Hinsen, W., Bytyn, W., and Baerns, M., 8th International Congress on Catalysis: Proceedings, Berlin: Verlag Chemie, 1984, vol. 3, p. 581.

  6. Ito, T. and Lunsford, J.H., Nature, 1985, vol. 314, no. 6013, p. 721.

    Article  CAS  Google Scholar 

  7. Driscoll, D.J., Martir, W., Wang, J.-X., and Lunsford, J.H., J. Am. Chem. Soc., 1985, vol. 107, no. 1, p. 58.

    Article  CAS  Google Scholar 

  8. Sinev, M.Yu., Korchak, V.N., Krylov, O.V., Grigoryan, R.R., and Garibyan, T.A., Kinet. Katal., 1988, vol. 29, no. 5, p. 1105.

    CAS  Google Scholar 

  9. Feng, Y., Niiranen, J., and Gutman, D., J. Phys. Chem., 1991, vol. 95, no. 17, p. 6558.

    Article  CAS  Google Scholar 

  10. Lomonosov, B.I. and Sinev, M.Yu., Kinet. Catal., 2016, vol. 57, no. 5, p. 647.

    Article  CAS  Google Scholar 

  11. Sinev, M., Arutyunov, V., and Romanets, A., Adv. Chem. Eng., 2007, vol. 32, p. 167.

    Article  CAS  Google Scholar 

  12. Lomonosov, V., Gordienko, Yu., Ponomareva, E., and Sinev, M., Chem. Eng. J., 2019, vol. 370, p. 1210.

    Article  CAS  Google Scholar 

  13. Sinev, M.Yu., J. Catal. 2003, vol. 216, nos. 1–2, p. 468.

    Article  CAS  Google Scholar 

  14. Sinev, M.Yu., Vorob’eva, G.A., and Korchak, V.N., Kinet. Katal., 1986, vol. 27, no. 5, p. 1164.

    CAS  Google Scholar 

  15. Sinev, M.Yu., Korchak, V.N., and Krylov, O.V., Kinet. Katal., 1987, vol. 28, no. 6, p. 1376.

    CAS  Google Scholar 

  16. Labinger, J.A. and Ott, K.C., J. Phys. Chem., 1987, vol. 91, no. 11, p. 2682.

    Article  CAS  Google Scholar 

  17. Zanthoff, H. and Baerns, M., Ind. Eng. Chem. Res., 1990, vol. 29, no. 1, p. 2.

    Article  CAS  Google Scholar 

  18. McCarty, J.G., McEwen, A.B., and Quinlan, M.A., Stud. Surf. Sci. Catal., 1990, vol. 55, p. 405.

    Article  CAS  Google Scholar 

  19. Tjatjopoulos, G.J. and Vasalos, I.A., Catal. Today., 1992, vol. 13, nos. 2–3, p. 361.

    Article  CAS  Google Scholar 

  20. Sun, J., Thybaut, J.W., and Marin, G.B., Catal. Today, 2008, vol. 137, no. 1, p. 90.

    Article  CAS  Google Scholar 

  21. http://www.nuigalway.ie/combustionchemistrycentre.

  22. AramcoMech Version 3.0, 2018. http://www.nuigalway.ie/combustionchemistrycentre/mechanismdownloads.

  23. Zhou, C.-W., Li, Y., Burke, U., Banyon, C., Somers, K.P., Ding, S., Khan, S., Hargis, J.W., Sikes, T., Mathieu, O., Petersen, E.L., AlAbbad, M., Farooq, A., Pan, Y., Zhang, Y., Huang, Z., Lopez, J., Loparo, Z., Vasu, S.S., and Curran, H.J., Combust. Flame, 2018, vol. 197, p. 423.

    Article  CAS  Google Scholar 

  24. Li, Y., Zhou, C.-W., Somers, K.P., Zhang, K., and Curran, H.J., Proc. Combust. Inst., 2017, vol. 36, no. 1, p. 403.

    Article  CAS  Google Scholar 

  25. Zhou, C.-W., Li, Y., O’Connor, E., Somers, K.P., Thion, S., Keesee, C., Mathieu, J., Petersen, E.L., DeVerter, T.A., Oehlschlaeger, M.A., Kukkadapu, G., Sung, C.-J., Alrefae, M., Khaled, F., Farooq, A., Dirrenberger, P., Glaude, P.-A., Battin-Leclerc, F., Santner, J., Ju, Y., Held, T., Haas, F.M., Dryer, F.L., and Curran, H.J., Combust. Flame, 2016, vol. 167, p. 353.

    Article  CAS  Google Scholar 

  26. Burke, U., Metcalfe, W.K., Burke, S.M., Heufer, K.A., Dagaut, P., and Curran, H.J., Combust. Flame, 2016, vol. 165, p. 125.

    Article  CAS  Google Scholar 

  27. Burke, S.M., Burke, U., Mc, DonaghR., Mathieu, O., Osorio, I., Keesee, C., Morones, A., Petersen, E.L., Wang, W., DeVerter, T.A., Oehlschlaeger, M.A., Rhodes, B., Hanson, R.K., Davidson, D.F., Weber, B.W., Sung, C.-J., Santner, J., Ju, Y., Haas, F.M., Dryer, F.L., Volkov, E.N., Nilsson, E.J.K., Konnov, A.A., Alrefae, M., Khaled, F., Farooq, A., Dirrenberger, P., Glaude, P.-A., Battin-Leclerc, F., and Curran, H.J., Combust. Flame, 2015, vol. 162, p. 296.

    Article  CAS  Google Scholar 

  28. Burke, S.M., Metcalfe, W.K., Herbinet, O., Battin-Leclerc, F., Haas, F.M., Santner, J., Dryer, F.L., and Curran, H.J., Combust. Flame, 2014, vol. 161, p. 2765.

    Article  CAS  Google Scholar 

  29. Kéromnès, A., Metcalfe, W.K., Heufer, K.A., Donohoe, N., Das, A.K., Sung, C.-J., Herzler, J., Naumann, C., Griebel, P., Mathieu, O., Krejci, M.C., Petersen, E.L., Pitz, W.J., and Curran, H.J., Combust. Flame, 2013, vol. 160, p. 995.

    Article  Google Scholar 

  30. Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J., Int. J. Chem. Kinet., 2013, vol. 45, p. 638.

    Article  CAS  Google Scholar 

  31. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Jr., Lissianski, V., and Qin, Z. http://www.me.berkeley.edu/gri_mech.

  32. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., and Law, C.K. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/ Mechanisms/USC-Mech%20II/USC_Mech%20II.htm.

  33. Konnov, A.A. Detailed reaction mechanism for small hydrocarbons combustion. Release 0.5, (2000), available as Electronic Supplementary Material to: Coppens, F.H.V., de Ruyck, J., and Konnov, A.A., Combust. Flame, 2007, vol. 149, p. 409.

    Article  Google Scholar 

  34. Hughes, K.J., Turanyi, T., Clague, A.R., and Pilling, M.J. The Leeds methane oxidation mechanism, Version 1.5. 2001. http://garfield.chem.elte.hu/Combustion/mechanisms/ metan15.dat.

  35. Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego. http://combustion.ucsd.edu.

  36. C1–C3 mechanism, Version 1412, December 2014. http://creckmodeling.chem.polimi.it.

  37. NIST Chemical Kinetics Database. https://kinetics.nist.gov/kinetics.

  38. Baulch, D.L. Reaction Kinetics Database. School of Chemistry. The University of Leeds.

  39. Hughes, K.J., Turányi, T., Clague, A.R., and Pilling, M.J., Int. J. Chem. Kinet., 2001, vol. 33, p. 513.

    Article  CAS  Google Scholar 

  40. http://www.reactiondesign.com/products/chemkin/ chemkin-2.

  41. http://www.kintechlab.com/ru/produkty/chemical-workbench.

  42. Lebedev, A.V., Okun, M.V., Chorkov, V.A., Tokar, P.M., and Strelkova, M., J. Math. Chem., 2013, vol. 51, p. 73.

    Article  CAS  Google Scholar 

  43. Tsang, W. and Hampson, R.F., J. Phys. Chem. Ref. Data, 1986, vol. 15, p. 1087.

    Article  CAS  Google Scholar 

  44. Warnatz, J., Combustion Chemistry, Gardiner, W.C., Jr., Ed., New York: Springer, 1984, p. 197.

  45. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, T., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref. Data, 1992, vol. 21, p. 411.

    Article  CAS  Google Scholar 

  46. Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref., 2005, vol. 34, p. 757.

    CAS  Google Scholar 

  47. Sinev, M.Yu., Catal. Today, 1992, vol. 13, no. 4, p. 561.

    Article  CAS  Google Scholar 

  48. Sinev, M.Yu., Catal. Today, 1995, vol. 24, no. 3, p. 389.

    Article  CAS  Google Scholar 

  49. Sinev, M.Yu., Russ. J. Phys. Chem. B, 2007, vol. 1, no. 4, p. 329.

    Article  Google Scholar 

  50. You, X.Q., Wang, H., Goos, E., Sung, C.J., and Klippenstein, S.J., J. Phys. Chem. A, 2007, vol. 111, p. 4031.

    Article  CAS  Google Scholar 

  51. Srinivasan, N.K., Su, M.C., and Michael, J.V., J. Phys. Chem. A, 2007, vol. 111, p. 11 589.

    Article  Google Scholar 

  52. Yu, C.L., Wang, C., and Frenklach, M., J. Phys. Chem., 1995, vol. 99, p. 14 377.

    Article  Google Scholar 

  53. Wang, B.S., Hou, H., Yoder, L.M., Muckerman, J.T., and Fockenberg, C., J. Phys. Chem. A, 2003, vol. 107, p. 11 414.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-00798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lomonosov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Abbreviations and notation: OCM, oxidative coupling of methane; RT, relative tolerance; CAS, catalytically active sites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomonosov, V.I., Sinev, M.Y. Analysis of Heterogeneous-Homogeneous Model of Oxidative Coupling of Methane Using Kinetic Scheme Reduction Procedure. Kinet Catal 62, 103–115 (2021). https://doi.org/10.1134/S0023158420060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420060063

Keywords:

Navigation