Skip to main content
Log in

Inhibiting Effect of 4-Hydroxy-2,5-Dimethylfuran-3-one on the Radical Chain Oxidation of Styrene

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The O–H bond strength was calculated by the G4 and the M06-2X/MG3S methods for 2‑hydroxy-3-methylcyclopent-2-en-1-one (maple lactone), 4-hydroxy-2,3-dimethyl-2H-furan-5-one (sotolon), 4-hydroxy-5-methylfuran-3-one, 4-hydroxy-2,5-dimethylfuran-3-one (strawberry furanone), (2R)-2-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2H-furan-5-one (ascorbic acid), 5-hydroxy-2-(hydroxymethyl)pyran-4-one (kojic acid), 3-hydroxy-2-methylpyran-4-one (maltol), 3-hydroxy-2-ethylpyran-4-one (ethylmaltol), 4-hydroxy-6-methylpyran-2-one, and 5-hydroxy-6-methyl-3,4-dihydro-2H-pyran-4-one (dihydromaltol). The calculations indicated the presence of a weak O–H bond of less than 82.0 kcal/mol in 4-hydroxyfuran-3-one derivatives. The experimental rate constant of the reaction of the compound with the lowest O–H bond strength, 4-hydroxy-2,5-dimethylfuran-3-one, with peroxyl radicals in chlorobenzene and acetonitrile was comparable to the data for dibutylhydroxytoluene, but the stoichiometric coefficient of inhibition was 0.17 (PhCl) and 0.66 (MeCN), which was significantly smaller than for dibutylhydroxytoluene. The activation enthalpy for hydrogen atom elimination from 4-hydroxy-2,5-dimethylfuran-3-one by peroxyl radicals calculated by the SMD(PhCl)-M05/MG3S method correlated well with the data for 5-hydroxy and 5-aminouracil derivatives, which is indicative of the common mechanism of interaction of these compounds with peroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O., Asian Pac. J. Cancer Biol., 2012, vol. 5, no. 1, p. 9.

    CAS  Google Scholar 

  2. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, New York: Oxford University Press, 2015, p. 944.

    Book  Google Scholar 

  3. Zinatullina, K.M., Kasaikina, O.T., Kuz’min, V.A., and Khrameeva, N.P., Kinet. Catal., 2019, vol. 60, p. 266.

    Article  CAS  Google Scholar 

  4. Retsky, K.L., Freeman, M.W., and Frei, B., J. Biol. Chem., 1993, vol. 268, p. 1304.

    Article  CAS  Google Scholar 

  5. Schmidt, A.M., Hori, O., Brett, J., Yan, D.D., Wauitier, J.L., and Stern, D., Arterioscler. Thromb., 1994, vol. 14, p. 1521.

    Article  CAS  Google Scholar 

  6. Tesfamariam, B., Free Radical Biol. Med., 1994, vol. 16, p. 383.

    Article  CAS  Google Scholar 

  7. Slaughter, J.C., Biol. Rev., 1999, vol. 74, no. 3, p. 259.

    Article  Google Scholar 

  8. Yoon, H.S., Kwon, J.H., and Choi, J.C., Korean J. Food Sci. Technol., 1984, vol. 14, no. 3, p. 265.

    Google Scholar 

  9. Koga, T., Moro, K., and Matsudo, T., J. Agric. Food Chem., 1998, vol. 46, no. 3, p. 946.

    Article  CAS  Google Scholar 

  10. Liégeois, C., Lermusieau, G., and Collin, S., J. Agric. Food Chem., 2000, vol. 48, no. 4, p. 1129.

    Article  Google Scholar 

  11. Miyake, T. and Shibamoto, T., J. Agric. Food Chem., 1998, vol. 46, no. 9, p. 3694.

    Article  CAS  Google Scholar 

  12. Mi, H., Hiramoto, T., Kujirai, K., Ando, K., Ikarashi, Y., and Kikugawa, K., J. Agric. Food Chem., 2001, vol. 49, no. 10, p. 4950.

    Article  CAS  Google Scholar 

  13. Kim, A.R., Zou, Y., Kim, H.S., Choi, J.S., Chang, G.Y., Kim, Y.J., and Chung, H.Y., J. Pharm. Pharmacol., 2002, vol. 54, no. 10, p. 1385.

    Article  CAS  Google Scholar 

  14. Murakami, K., Ito, M., Tanemura, Y., and Yoshino, M., Biomed. Res., 2001, vol. 22, no. 4, p. 183.

    Article  CAS  Google Scholar 

  15. Lee, D., Ghafoor, K., Moon, S., Kim, S.H., Kim, S., Chun, H., and Park, J., Qual. Assur. Saf. Crops Foods, 2015, vol. 7, no. 4, p. 493.

    Article  CAS  Google Scholar 

  16. Hwang, S.J., Cho, S.H., and Yon, D.R., Korean J. Prev. Med., 1993, vol. 26, no. 4, p. 551.

    Google Scholar 

  17. Gupta, A.K., Gover, M.D., Nouri, K., and Taylor, S., J. Am. Acad. Dermatol., 2006, vol. 55, no. 6, p. 1048.

    Article  Google Scholar 

  18. Burton, G.W., Doba, T., Gabe, E.J., Hughes, L., Lee, F.L., Prasad, L., and Ingold, K.U., J. Am. Chem. Soc., 1985, vol. 107, no. 24, p. 7053.

    Article  CAS  Google Scholar 

  19. Grabovskiy, S.A., Antipin, A.V., Grabovskaya, Y.S., Andriayshina, N.M., Akchurina, O.V., and Kabal’nova, N.N., Lett. Org. Chem., 2017, vol. 14, no. 1, p. 24.

    Article  CAS  Google Scholar 

  20. Antipin, A.V., Grabovskii, S.A., Grabovskaya, Y.S., and Kabal’nova, N.N., Kinet. Catal., 2020, vol. 61, p. 369.

    Article  CAS  Google Scholar 

  21. Loshadkin, D., Roginsky, V., and Pliss, E., Int. J. Chem. Kinet., 2002, vol. 34. No. 3, p. 162.

    Article  CAS  Google Scholar 

  22. Howard, J.A. and Ingold, K.U., Can. J. Chem., 1965, vol. 43, p. 2729.

    Article  CAS  Google Scholar 

  23. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F. et al. Gaussian 09, Revision C.01, Wallingford CT: Gaussian Inc., 2010.

    Google Scholar 

  24. Zhurko, G.A., ChemCraft, Version 1.6 (build 332). http://www.chemcraftprog.com

  25. Curtiss, L.A., Redfern, P.C., and Raghavachari, K., J. Chem. Phys., 2007, vol. 126, no. 8, p. 084 108.

    Article  Google Scholar 

  26. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, nos. 1–3, p. 215.

    Article  CAS  Google Scholar 

  27. Lynch, B.J., Zhao, Y., and Truhlar, D.G., J. Phys. Chem. A, 2003, vol. 107, no. 9, p. 1384.

    Article  CAS  Google Scholar 

  28. Zhao, Y., Schultz, N.E., and Truhlar, D.G., J. Chem. Phys., 2005, vol. 123, p. 161 103.

    Article  Google Scholar 

  29. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. B, 2009, vol. 113, no. 18, p. 6378.

    Article  CAS  Google Scholar 

  30. Alecu, I.M., Zheng, J., Zhao, Y., and Truhlar, D.G., J. Chem. Theory Comput., 2010, vol. 6, p. 2872.

    Article  CAS  Google Scholar 

  31. Denisov, E.T. and Khudyakov, I.V., Chem. Rev., 1987, vol. 87, no. 6, p. 1313.

    Article  CAS  Google Scholar 

  32. Ingold, K.U. and Pratt, D.A., Chem. Rev., 2014, vol. 114, no. 18, p. 9022.

    Article  CAS  Google Scholar 

  33. Somers, K.P. and Simmie, J.M., J. Phys. Chem. A, 2015, vol. 119, no. 33, p. 8922.

    Article  CAS  Google Scholar 

  34. Grabovskii, S.A., Andriyashina, N.M., Grabovskaya, Y.S., Antipin, A.V., and Kabal’nova, N.N., J. Phys. Org. Chem., 2020, vol. 33, no. 8, p. e4065.

    Article  CAS  Google Scholar 

  35. Warren, J.J., Tronic, T.A., and Mayer, J.M., Chem. Rev., 2010, vol. 110, no. 12, p. 6961.

    Article  CAS  Google Scholar 

  36. Amorati, R., Pedulli, G.F., and Valgimigli, L., Org. Biomol. Chem., 2011, vol. 9, no. 10, p. 3792.

    Article  CAS  Google Scholar 

  37. Grabovskii, S.A., Grabovskaja, Y.S., Antipin, A.V., and Kabal’nova, N.N., Vestn. Bashkir. Univ., 2019, vol. 24, no. 4, p. 830.

    Google Scholar 

  38. Tishchenko, O. and Truhlar, D.G., J. Phys. Chem. Lett., 2012, vol. 3, no. 19, p. 2834.

    Article  CAS  Google Scholar 

  39. Tikhonov, I., Roginsky, V., and Pliss, E., Int. J. Chem. Kinet., 2009, vol. 41, no. 2, p. 92.

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the “Chemistry” Multiaccess Center, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences.

Funding

This study was performed under the research program at the Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences (state registration no. AAAA-A20-120012090025-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grabovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations: AIBN, 2,2'-azo-bis-isobutyronitrile; St, styrene; α-TP, α-tocopherol; HPLC, high-performance liquid chromatography; wi, initiation rate; w0, oxygen absorption rate during the oxidation without inhibitor; w, oxygen absorption rate in inhibited oxidation at the initial moment of time; wt, oxygen absorption rate in inhibited oxidation at a moment of time t; f, stoichiometric coefficient of inhibition; F, degree of inhibition; tind induction period; k7, rate constant of the reaction of the peroxyl radical with inhibitor; k6, rate constant of recombination of peroxyl radicals; ν, oxidation chain length.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovskii, S.A., Grabovskaya, Y.S., Antipin, A.V. et al. Inhibiting Effect of 4-Hydroxy-2,5-Dimethylfuran-3-one on the Radical Chain Oxidation of Styrene. Kinet Catal 62, 43–48 (2021). https://doi.org/10.1134/S002315842101002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842101002X

Keywords:

Navigation