Skip to main content
Log in

Polycyclic Aromatic Hydrocarbons in Rocks and Soils of the Siljan Impact Crater, Sweden

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

New data were used to analyze the distribution of polycyclic aromatic hydrocarbons (PAH) in the lithological complex and soils of the Siljan impact crater area (Scandinavian Shield, central Sweden). Ten individual unsubstituted PAHs were identified, including diphenyl, fluorene, phenanthrene, anthracene, pyrene, chrysene, fluoranthene, benzo[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene, as well as a number of substituted naphthalene homologs. The PAHs were analyzed using the Shpolsky spectroscopy. The studies were carried out at the crater edge (an annular morphostructural depression) and in the adjacent areas. The depression is characterized by traces of hydrothermal activity and modern oil and gas seepages. In the gas seepage area at depths of 267‒485 m, nine out of eleven studied PAHs were identified (concentration from 20 to 890 μg/kg in total) in the igneous rock complex. Sedimentary rocks at depths from 10 to 250 m contain only naphthalene homologs, phenanthrene, and pyrene. The PAH concentration in sedimentary rocks in the oil seepage area is two times higher than in the gas seepage area, and its composition (naphthalene homologs, phenanthrene, pyrene, diphenyl, chrysene) is close to the PAH composition in oil. In general, soils of the crater show a hydrocarbon dispersal halo, which is presumably caused by the oil and gas seepages and traces of hydrothermal activity. Characteristics of this halo are differentiated in space and make it possible to predict hydrocarbon seepages in unexplored areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Alekseeva, T.A. and Teplitskaya, T.A., Spektrofluorimetricheskie metody analiza aromaticheskikh uglevodorodov v prirodnykh sredakh (Spectrofluorimetric Methods for Determining Aromatic Hydrocarbons in Natural Media), Leningrad: Gidrometeoizdat, 1981.

  2. Alexsander, R., Strachan, M.G., Kagi, R.I., and Van Bronswijk, W., Heating rate effects on aromatic maturity indicators, Org. Geochem., 1986, vol. 10, pp. 997–1003.

    Article  Google Scholar 

  3. Belcher, C.M., Finch, P., Collinson, M.E., Scott, A.C., and Grassineau, N.V., Geochemical evidence for combustion of hydrocarbons during the K–T impact event, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 4112–4117.

    Article  Google Scholar 

  4. Calhoum, G.G., Fluorescence analysis can identify movable oil in self-sourcing reservoirs, Oil Gas J., 1995, vol. 93, no. 23, pp. 39–42.

    Google Scholar 

  5. Castaño, J.R., Prospects for commercial abiogenic gas production: implications from the Siljan Ring area, Sweden, in The Future of Energy Gases, Howell, D.G., Ed., Washington, DC: U.S. Geol. Surv. Prof. Pap. 1570, 1993, pp. 133–154.

  6. Chernova, T.G., Paropkari, A.L., Pikovsky, Yu.I., and Alekseeva, T.A., Hydrocarbons in the Bay of Bengal and Central Indian Basin bottom sediments: indicators of geochemical processes in the lithosphere, Mar. Chem., 1999, vol. 66, pp. 231–243.

    Article  Google Scholar 

  7. Chernova, T.G., Rao, P.S., Pikovsky, Yu.I., et al., The composition and the source of hydrocarbons in sediments taken from the tectonically active Andaman Backarc Basin, Indian Ocean, Mar. Chem., 2001, vol. 75, pp. 1–15.

    Article  Google Scholar 

  8. Collini, B., Geological Setting of the Siljan Ring Structure, in Deep Drilling in Crystalline Bedrock, Boden, A. and Eriksson, K.G., Eds., Berlin: Springer, 1988, vol. 1 (The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes), pp. 349–364.

  9. Curtiss, D.K. and Wavrek, D.A., Hydrocarbons in meteorite impact structures: Oil reserves in the Ames feature, JOM, 1998, vol. 50, no. 12, pp. 35–37.

    Article  Google Scholar 

  10. Donofrio, R.R., Impact craters: implications for basement hydrocarbon production, J. Petrol. Geol., 1981, vol. 3, no. 3, pp. 279–302.

    Article  Google Scholar 

  11. Donofrio, R.R., North American impact structures hold giant field potential, Oil Gas J., 1998, vol. 96, no. 19, pp. 69–83.

    Google Scholar 

  12. Drake, H., Roberts, N.M.W., Heim, C., et al., Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden, Nature Commun., 2019, vol. 10, pp. 4736–4739.

    Article  Google Scholar 

  13. Durelius, D., The gravity field of the Siljan ring structure, in Deep Drilling in Crystalline Bedrock, Boden, A. and Eriksson, K.G., Eds., Berlin: Springer, 1988, vol. 1 (The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes), pp. 85–94.

  14. Fetzer, J.C., Simoneit, B.R.T., Budzinski, H., et al., Identification of large PAHs in bitumens from deep-sea hydrothermal vents, in Abstracts of Papers, 15th Int. Symp. Policyclic Arom. Comp. PAC Chem., Biol. and Envir. Impact, Italy, 1995. pp. 119–120.

  15. Florovskaya, V.N., Zezin, R.B., Ovchinnikova, L.I., et al., Diagnostika organicheskikh veshchestv v gornykh porodakh i mineralakh magmaticheskogo i gidrotermal’nogo proiskhozhdeniya (Identification of Organic Matter in Igneous Rocks and Minerals), Moscow: Nauka, 1968.

  16. Garrigues, P., De Sury, R., Angelin, M.L., Bellocq, J., and Oudin, J.L., and Ewald, M. Relation of the methylated aromatic hydrocarbon distribution pattern to the maturity of organic matter in the ancient sediments from the Mahakam Delta, Geochim. Cosmochim. Acta, 1988, vol. 52, no. 2, pp. 375–384.

    Article  Google Scholar 

  17. Geokhimiya politsiklicheskikh aromaticheskikh uglevodorodov v gornykh porodakh i pochvakh (Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils), Moscow: MGU, 1996.

  18. Geptner, A.R., Alekseeva, T.A., and Pikovskii, Yu.I., Polycyclic aromatic hydrocarbons in volcanic rocks and hydrothermal minerals from Iceland, Lithol.Miner. Resour., 1999, no. 6, pp. 567–578.

  19. Hode, T., Dalwigk, I.V., and Broman, C., A hydrothermal system associated with the Siljan impact structure, Sweden: Implications for the search for fossil life on Mars, Astrobiology, 2003, vol. 3, no. 2, pp. 271–289.

    Article  Google Scholar 

  20. Johansson, A., Geochemical studies on the Boda Pb–Zn deposit in the Siljan astrobleme, Central Sweden, GFF, 1984, vol. 106, pp. 15–25.

    Google Scholar 

  21. Kaminskii, F.V., Kulakova, I.I., and Ogloblina, A.I., Polycyclic aromatic hydrocarbons in carbonado and diamond, Dokl. Akad. Nauk SSSR, 1985, vol. 283, no. 4, pp. 985–988.

    Google Scholar 

  22. Karlsson, P.O., Preparatory Investigation—an Overview, in Deep Drilling in Crystalline Bedrock, Boden, A., Eriksson, K.G., Eds., Berlin: Springer, 1988, vol. 1 (The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes), pp. 10–17.

  23. Kawka, O.E. and Simoneit, B.R.T., Polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Guaymas Basin spreading center, Appl. Geochem., 1990, vol. 5, pp. 17–27.

    Article  Google Scholar 

  24. Khaustov, A.P. and Redina, M.M., Geochemical markers based on concentration ratios of PAH in oils and oil-polluted areas, Geochem. Int, 2017, no. 1, pp. 98–107.

  25. Komor, S.C., Valley, J.W., Brown, P.E., and Collini, B., Fluid inclusions in granite from the Siljan ring impact structure and surrounding regions, in Deep Drilling in Crystalline Bedrock, Boden A., and Eriksson, K.G., Eds., Berlin: Springer, 1988, vol. 1 (The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes), pp. 180‒208.

  26. Konstantinova, E.Yu., et al., Polycyclic aromatic hydrocarbons in soils of industrial and residential zones of Tyumen, Izv. Tomsk. Politekhn. Univ. Inzhin. Georesurs., 2018, vol. 329, no. 8, pp. 66–79.

    Google Scholar 

  27. Kudryavtsev, N.A., Oil, gas, and solid bitumens in igneous and metamorphic rocks, in Trudy VNIGRI (Trans. VNIGRI), Leningrad: Gostoptekhizdat, 1959, no. 142.

  28. Kutcherov, V.G. and Krayushkin, V.A., Deep-seated abiogenic origin of petroleum: From geological assessment to physical theory, Rev. Geophys., 2010, vol. 48, pp. 1–30.

    Article  Google Scholar 

  29. Laflamme, R. and Hites, R., The global distribution of polycyclic aromatic hydrocarbons in recent sediments, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 289–303.

    Article  Google Scholar 

  30. Laier, T., Light hydrocarbons in drill cuttings from the Gravberg-1 borehole, in Deep Drilling in Crystalline Bedrock, Boden, A., Eriksson, K.G., Eds., Berlin: Springer, 1988, vol. 1 (The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes), pp. 140–147.

  31. Lund, C.E., Roberts, R.G., Dahl-Jensen, T., et al., Deep crustal structure in the vicinity of the Siljan Ring, in Deep Drilling in Crystalline Bedrock, Boden, A. and Eriksson, K.G., Eds., Berlin: Springer, 1988, vol. 1 (The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes), pp. 355–364.

  32. Masaitis, V.L., Mineragenic consequences of the cosmic matter influx, in Planeta Zemlya. Entsiklopedicheskii spravochnik (Planet Earth: Encyclopedic Handbook), St. Petersburg: VSEGEI, 2008, vol. Minerageniya, pp. 249–260.

  33. Melosh, H., Impact Cratering: A Geological Process, Oxford Univ. Press, New York, 1989. Translated under the title Obrazovanie udarnykh kraterov. Geologicheskii protsess, Moscow: Mir, 1994.

  34. Nurmukhametov, R.N., Nersesova, G.N., and Utkina, L.F., Analytical application of fine luminescence spectra of intricate organic molecules at low temperatures, in Problemy analiticheskoi khimii, Romanovska, G.I, Ed., Moscow: Nauka, 2015, vol. 19 (Luminescence Analysis).

  35. Osinski, G.R., Tornabene, L.L., Banerjee, N.R., et al., Impact generated hydrothermal systems on Earth and Mars, Icarus, 2013, vol. 224, pp. 347–363.

    Article  Google Scholar 

  36. Pikovsky, Yu.I., Ogloblina, A.I., Shepeleva, N.N., and Bugar’, N.Yu., Detection of signs of petroleum potential based on polycyclic aromatic HC complexes, Geol. Nefti Gaza, 1991, no. 7, pp. 22–26.

  37. Pikovsky, Yu.I., Glasko, M.P., and Kucherov, V.G., The block structure and the presence of oil and gas in the Siljan impact crater, Russ. Geol. Geophys., 2017, vol. 58, no. 2, pp. 243–249.

    Article  Google Scholar 

  38. Radke, M., Application of aromatic compounds as maturity indicators in source rocks and crude oil, Mar. Petrol. Geol., 1988, vol. 5, pp. 224–236.

    Article  Google Scholar 

  39. Rovinsky, F.Ya., Teplitskaya, T.A., and Alekseeva, T.A., Fonovyi monito politsiklicheskikh aromaticheskikh uglevodorodov (Background Monitoring? of Polycyclic Aromatic Hydrocarbons), Leningrad: Gidrometeoizdat, 1988.

  40. Simoneit, R.T., Maturing of organic matter and formation of oil: Hydrothermal aspect, Geokhimiya, 1986, no. 2, pp. 236–254.

  41. Simoneit, R.T., Petroleum generation, an easy and widespread process in hydrothermal systems: an overview, Appl. Geochem., 1990, vol. 5, pp. 3–15.

    Article  Google Scholar 

  42. Sorokina, T.S., Kodina, L.A., and Galimov, E.M., Geochemistry of polycyclic aromatic hydrocarbons in sedimentary rocks with different thermal regime, Geokhimiya, 1986, no. 11, pp. 1650‒1659.

  43. Tsibart, A.S. and Gennadiev, A.N., Associations of polycyclic hydrocarbons in fire-inflicted soils, Vestnik MGU, Ser. Geogr., 2011, no. 3, pp. 13–20.

  44. Tsibart, A.S. and Gennadiev, A.N., Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review), Euras. Soil Sci., 2013, vol. 7, no. 46, pp. 728–741.

    Article  Google Scholar 

  45. Venkatesan, M.I. and Dahl, J., Organic geochemical evidence for global fires at the Cretaceous/Tertiary boundary, Nature, 1989, vol. 338, pp. 57–60.

    Article  Google Scholar 

  46. Vlierboom, F.W., Collini, B., and Zumberge, J.E., The occurrence of petroleum in sedimentary rocks of the meteor impact crater at Lake Siljan, Sweden, Org. Geochem., 1986, vol. 10, no. 1/3, pp. 153–161.

    Article  Google Scholar 

  47. Wickman, F.E., The Siljan ring impact structure: Possible connections with minor ores in its neighborhood, GFF, 1994, vol. 116, no. 3, pp. 145–146.

    Article  Google Scholar 

  48. Wolbach, W.S., Gilmour, I., Anders, E., et al., Global fire at the Cretaceous-Tertiary boundary, Nature, 1988, vol. 334, pp. 665–669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. I. Pikovsky, N. I. Khlynina or V. G. Kutcherov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikovsky, Y.I., Khlynina, N.I. & Kutcherov, V.G. Polycyclic Aromatic Hydrocarbons in Rocks and Soils of the Siljan Impact Crater, Sweden. Lithol Miner Resour 56, 236–247 (2021). https://doi.org/10.1134/S0024490221030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490221030068

Keywords:

Navigation