Skip to main content
Log in

Composition and Formation Conditions of Lower Eocene Shallow-Marine Carbonates in Southern Armenia

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Nummulite facies are known to be a good indicator of Eocene shallow-water paleoenvironments. Nummulitic limestones are widespread in the Lower Eocene of Armenia—the Tethys/northern Peri-Tethys transition zone, but they are studied insufficiently so far. The objective of this work was an integrated study of Lower Eocene deposits in the typical Urtsadzor section (Ararat region, Armenia): detailization of the stratigraphic subdivision based on larger benthic foraminifers (LBF); restoration of sedimentation settings based on the facies analysis and tectonic conditions of the basin origin, and evolution in the Early–Middle Eocene by studying the rock fracture system and formational analysis. For the first time, the Ypresian shallow benthic zones SBZ 9-10 and SBZ 10-11 of the Tethyan Chronostratigraphic Scale were identified in Kotutz and Sevan formations—an important contribution to the development of a modern stratigraphic chart of Armenia. Restoration of depositional settings based on the microfacies analysis was accomplished for Lower Eocene carbonate rocks of Armenia for the first time. Nine microfacies were determined and interpreted in the Ypresian part of the Urtsadzor section. Evolution of paleobiocoenoses represented mainly by nummulites, orthophragmines, and red algae was traced through the section. A transgressive succession of microfacies types was revealed from the littoral to lower–middle parts of the middle ramp. Comparison of the section with the adjacent Shagap and Landzhar sections allowed us to estimate the facies variability of rocks and the main direction of transgressional expansion. Ypresian LBF in paleobiocoenoses of southern Armenia are similar to the Peri-Tethyan varieties at the generic and specific level, and distinguished from the Tethyan biocoenoses by the absence of porcelaneous foraminifers (alveolinids and soritids). The South Armenian Ypresian paleobiota is distinguished from the assemblages in northern Armenia and northern Peri-Tethys by the abundance of red algae remnants. Wide Late Ypresian transgression resulted in the proliferation of LBF in the shallow oligotrophic basins, and their hydrological differences provoked the diversification of biocoenoses. The study of jointing systems in nummulitic limestones healed with aluminous products of karstification demonstrated that the jointing was formed at the Early/Middle Eocene transition due to the northeastern to sublatitudinal tension during uplift of the southern rift shoulder of the emerging Middle Eocene Shirak–Sevan–Megri rift. Rifting was preceded by the Early Eocene attenuation of tectonic activity and expansion of a wide carbonate sedimentation basin with development features typical of pre-rift basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Adamia, Sh.A., Zakariadze, G., Chkhouta, T., et al., Geology of the Caucasus: a review, Turk. J. Earth Sci., 2011, vol. 20, pp. 489‒544.

    Google Scholar 

  2. Agamalyan, V.A., Sarkisyan, Shch.A., Lorbasyan, T.K., and Israelyan, A.G., Main tectonic units in Armenia, Uchen. Zap. Erevan. Gos. Univ. Geol. Geogr., 2012, no. 1, pp. 3–12.

  3. Aigner, T., Facies and origin of Nummulitic buildups: an example from the Gisa Pyramids Plateau (Middle Eocene, Egypt), Neues Jahrb. Geol. Palaontol., 1983, vol. 166, no. 3, pp. 347‒368.

    Google Scholar 

  4. Aigner, T., Biofabrics as dynamic indicators in Nummulite accumulations, J. Sediment. Res., 1985, vol. 55, no. 1, pp. 131‒134.

    Google Scholar 

  5. Airapetyan, F.A. and Zakrevskaya, E.Yu., Paleogene stratigraphic scale of Armenia, in Obshchaya stratigraficheskaya shkala Rossii: sostoyanie i perspektiva obustroistva (General Stratigraphic Scale of Russia: State and perspectives of Arrangement), Fedonkin, M.A., Ed., Moscow: GIN RAN, 2013, p. 324–328.

  6. Arni, P., L'Évolution des Nummulitinae en tant que facteur de modification des dépóts littoraux, Colloq. Int. Micropaleont., Dakar. Mem. BRGM, 1965, vol. 32, pp. 7–20.

    Google Scholar 

  7. Avagyan, A., Soson, M., Karakhanian, A., et al., Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions, Spec. Publ. Geol. Soc. London, 2010, vol. 340, pp. 393‒408.

    Article  Google Scholar 

  8. Baker, B.H., Crossley, R., and Goles, G.G., Tectonic and magmatic evolution of the southern part of the Kenya rift valley, in Petrology and Geochemistry of Continental Rifts. Tectonics and Geophysics of Continental Rifts, R. Neumann and I.B. Ramberg, Eds., Reidel: Dordrecht, 1978. Translated under the title Kontinental’nye rifty, Moscow: Mir, 1981.

  9. Banks, C.J., Robinson, A.G., and Williams, M.P., Structure and regional tectonics of the Achara-Trialet foldbelt and the adjacent Rioni and Kartli foreland basins, Republic of Georgia, in Regional and Petroleum Geology of the Black Sea and Surrounding Areas, Robinson, A.G., Ed., Am. Ass. Petrol. Geol. Memoir, 1997, vol. 68, pp. 331‒346.

    Google Scholar 

  10. Beavington-Penney, S.J., Wright, V.P., and Racey, A., Sediment production and dispersal on foraminifera-dominated Early Tertiary ramps: The Eocene El Garia Formation, Tunisia, Sedimentology, 2005, vol. 52, pp. 537‒569.

    Article  Google Scholar 

  11. Buxton, M.W.M. and Pedley, M.H., A standartised model for Tethyan Tertiary carbonate ramps, J. Geol. Soc. London, 1989, vol. 146, no. 5, pp. 746‒748.

    Article  Google Scholar 

  12. Cotton, L.J., Zakrevskaya, E.Y., van der Boon, A., et al., Integrated stratigraphy of the Priabonian (Upper Eocene) Urtsadzor section, Armenia, Newsl. Stratigr., 2017, vol. 50, no. 3, pp. 269–295.

    Article  Google Scholar 

  13. Djrbashyan, R.T., Paleogene volcanism in the Sevan–Shirak synclinorium, in Geologiya Armyanskoi SSR (Geology of the Armenian SSR), Yerevan: AN ArmSSR, 1970, vol. 4, pp. 225–256.

  14. Dunham, R.J., Classification of carbonate rocks according to depositiona1 texture, in Classification of Carbonate Rocks, Ham, W.E. Ed., Am. Ass. Petrol. Geol., Tulsa. 1962. pp. 108–121.

    Google Scholar 

  15. Embry, A.P. and Klovan, J.E., A Late Devonian reef tract on northeastern Banks Island, Northwest Territories, Bull. Can. Petrol. Geol., 1971, vol. 19, pp. 730‒781.

    Google Scholar 

  16. Fermont, W.J.J., Discocyclinidae from Ein Avedat (Israel), Utrecht Micropaleontol. Bull., 1982, vol. 27, pp. 1‒173.

    Google Scholar 

  17. Flügel, E., Microfacies of Carbonate Rocks, Analysis, Interpretation and Application, Berlin: Springer, 2004.

    Google Scholar 

  18. Gabrielyan, A.A., Paleogen i neogen Armenii (Paleogene and Neogene in Armenia), Yerevan: AN ArmSSR, 1964.

  19. Gabrielyan, A.A., Grigoryan, S.M., Sarkisyan, O.A., et al., Pozdneeotsenovo-ranneoligotsenovye geologicheskie i bioticheskie sobytiya na territorii byvshego SSSR (Late Eocene–Early Oligocene Geological and Biotic Events in the Former Soviet Union), Akhmet’ev, M.A, Ed., 1996, part 1 (Regional Geology of the Upper Eocene and Lower Oligocene), pp. 98–111.

  20. Gebhardt, H., Ćorić, S., Darga, R., et al., Middle to Late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany), Austr. J. Earth Sci., 2013, vol. 106, pp. 45–72.

    Google Scholar 

  21. Görür, N. and Tüysüz, Z., Petroleum geology of the southern continental margin of the Black Sea, in Regional and Petroleum Geology of the Black Sea and Surrounding Areas, Robinson, A.G., Ed., Am. Ass. Petrol. Geol. Memoir, 1997, vol. 68, pp. 241‒254.

    Google Scholar 

  22. Grigoryan, S.M., Nummulity i orbitoidy Armyanskoi SSR (Nummulites and Orbitoids in the Armenian SSR), Yerevan: AN ArmSSR, 1986.

  23. Gupta, S. and Kumar, K., Precursors of the Paleocene-Eocene thermal maximum in the Subathu Group, NW Sub-Himalaya, India, J. Asian Earth Sci., 2019, vol. 169, pp. 21–46.

    Article  Google Scholar 

  24. Hadi, M., Mosaddegh, H., and Abbassi, N., Microfacies and biofabric of nummulite accumulations (bank) from the Eocene deposits of Western Alborz (NW Iran), J. Afr. Earth Sci., 2016, vol. 124, pp. 216–233.

    Article  Google Scholar 

  25. Hadi, M., Vahidinia, M., and Hrabovsky, Ju., Larger foraminiferal biostratigraphy and microfacies analysis from the Ypresian (Ilerdian-Cuisian) limestones in the Sistan Suture Zone (eastern Iran), Turk. J. Earth Sci., 2019, vol. 28, pp. 122–145.

    Article  Google Scholar 

  26. Hottinger, L., Processes determining the distribution of larger foraminifera in space and time, Utrecht Micropaleontol. Bull., 1983, vol. 30, pp. 239– 253.

    Google Scholar 

  27. Jorry, S.J., Davaud, E., and Caline, B., Structurally controlled distribution of nummulite deposits: example of the Ypresian El Garia Formation (Kesra Plateau, Central Tunisia), J. Petrol. Geol., 2003, vol. 23, pp. 283–306.

    Article  Google Scholar 

  28. Jorry, S.J., Hasler, C.A., and Davaud, E., Hydrodynamic behaviour of Nummulites: implication for depositional models, Facies, 2006, vol. 52, pp. 221–235.

    Article  Google Scholar 

  29. Koronovskii, N.V., Lomize, M.G., Gushchin A.I., et al., Main events in the tectonic evolution of the Caucasian segment of the Mediterranean foldbelt, Vestn. MGU. Ser. Geol., 1997, no. 4, pp. 5–12.

  30. Krasheninnikov, V.A., Muzylev, N.G., and Ptukhyan, A.E., Stratigraphic subdivision of Paleogene deposits in Armenia based on planktonic foraminifers, nanoplankton, and nummulitides: part 1. Paleogene reference sections in Armenia, in Voprosy mikropaleontologii (Issues of Micropaleontology), Menner, V.V., Ed., Moscow: Nauka, 1985, no. 27.

  31. Kulka, A., The Arni sedimentological model in the Tatra Eocene, Kwartalnik Geol., 1985, vol. 29, no. 1, pp. 31–64.

    Google Scholar 

  32. Less, G., Paleontology and stratigraphy of the European Orthophragminae, Geol. Hungar. Ser., Palaeont., 1987, vol. 51, pp. 1–373.

    Google Scholar 

  33. Loeblich, A.R. and Tappan, H., Foraminiferal Genera and Their Classification, New York: Van Nostrand Reinhold, 1988.

    Book  Google Scholar 

  34. Lordkipanidze, M.B., Al’piiskii vulkanizm i geodinamika tsentral’nogo segmenta Sredizemnomorskogo skladchatogo poyasa (Alpine Volcanism and Geodynamics in the Central Segment of the Mediterranean Foldbelt), Tbilisi: Metsniereba, 1980.

  35. Lygina, E.A., Kopaevich, L.F., Nikishin, A.M., et al., Early–Middle Eocene deposits in Crimea: Facies properties and deposition conditions, Vestn. MGU. Ser. Geol., 2010, no. 65, pp. 343–354.

  36. Lygina, E.A., Fokin, P.A., Kopaevich, L.F., et al., Nummulitic facies of the Crimean-Caucasian region, Turk. J. Earth Sci., 2015, vol. 24, pp. 1–16.

    Google Scholar 

  37. Mateu-Vicens, G., Pomar, L., and Ferrandez-Canadel, C., Nummulitic banks in the upper Lutetian 'Buil level', Ainsa Basin, South Central Pyrenean Zone: The impact of internal waves, Sedimentology, 2012, vol. 59, pp. 527–552.

    Article  Google Scholar 

  38. Milanovskii, E.E., Geologiya SSSR (Geology of the Soviet Union), Moscow: MGU, 1991, vol. 3.

  39. Nebelsick, J., Rasser, M.W., and Bassi, D., Facies dynamics in Eocene to Oligocene circumalpine carbonates, Facies, 2005, vol. 51, pp. 197–216.

    Article  Google Scholar 

  40. Nikishin, A.M., Ziegler, P.A., Bolotov, S.N., and Fokin, P.A., Late Palaeozoic to Cenozoic evolution of the Black Sea-southern eastern Europe region: a view from the Russian Platform, Turk. J. Earth Sci., 2011, vol. 20, pp. 571–634.

    Google Scholar 

  41. Nikishin, A.M., Okay, A., Tuysuz, O., Demirer, A., et al., The Black Sea basins structure and history: New model based on new deep penetration regional seismic data, Mar. Petrol. Geol., 2015, vol. 59, part 2 (Tectonic history and paleogeography), pp. 656–670.

  42. Oftendal, K., Main geological features of Oslo graben, in Petrology and Geochemistry of Continental Rifts. Tectonics and Geophysics of Continental Rifts, Neumann, R. and Ramberg, I.B., Eds., Reidel: Dordrecht, 1978. Translated under the title Kontinental’nye rifty, Moscow: Mir, 1981.

  43. Papazzoni, C.A. and Seddighi, M., What, if anything, is a nummulite bank?, J. Foraminaferal. Res., 2018, vol. 48, no. 4, pp. 276–287.

    Article  Google Scholar 

  44. Papazzoni, A. and Trevisani, E., Facies analysis, palaeoenvironmental reconstruction, and biostratigraphy of the “Pesciara di Bolca” (Verona, northern Italy): An Early Eocene fossil-lagerstätte, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2006, vol. 242, pp. 21–35.

    Article  Google Scholar 

  45. Ptukhyan, A.E., Distribution of nummulites in Paleogene deposits in the Yerevan–Ordubad structural-facies zone, Izv. AN ArmSSR. Nauki Zemle, 1979, no. 3, pp. 11–19.

  46. Racey, A., A review of Eocene nummulite accumulations: structure, formation and reservoir potential, J. Sediment. Res., 2001, vol. 24, no. 1, pp. 79–100.

    Google Scholar 

  47. Reading, H.G., Collinson, G.D., Allen, F.A., et al., Sedimentary Environments: Processes, Facies and Stratigraphy, Oxford: Blackwell Science Ltd, 1996.

    Google Scholar 

  48. Robinson, A.G., Banks, C.J., Rutherford, M.M., and Hirst, J.P.P., Stratigraphic and structural development of the Eastern Pontides, Turkey, J. Geol. Soc. London, 1995, vol. 152, pp. 861‒872.

    Article  Google Scholar 

  49. Rolland, Y., Billo, S., Corsini, M., et al., Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): linking Neo-Tethys subduction from E-Turkey to W-Iran, Int. J. Earth Sci. (Geol. Rundsch.), 2009, vol. 98, no. 3, pp. 533–550.

    Google Scholar 

  50. Sadoyan, A.A. and Aslanyan, P.M., Paleogene fossil organogenic buildups in the Araks River basin, Izv. AN ArmSSR. Nauki Zemle, 1981, vol. 34, no. 4, pp. 15–27.

    Google Scholar 

  51. Sadoyan, A.A., Litologiya paleogena Armyanskoi SSR (Paleogene lithology in the Armenian SSR), Yerevan: AN ArmSSR, 1989.

  52. Sahakyan, L., Avagyan, A., Sosson, M., et al., Tectonic conditions and evolution of Paleogene sedimentation of Shagap syncline, Proc. NAS RA: Earth Sci., 2017a, vol. 70, no. 1, p. 24–35.

  53. Sahakyan, L., Bosch, D., Sosson, M., et al., Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): evidence of a subduction geodynamic environment, Tectonic Evolution of the Eastern Black Sea and Caucasus, Spec. Pub. Geol. Soc. London, 2017b, vol. 428, p. 73–98.

    Article  Google Scholar 

  54. Sahakyan, L., Grigoryan, T., Avagyan, A., et al., Upper Eocene-Lower Oligocene Shagap Reef (Armenia): Composition and paleoenvironment, Proc. NAS RA: Earth Sciences, 2020, vol. 73, no. 1, pp. 3–15.

  55. Sahy, D., Săsăran, E., and Tămaş, T., Microfacies analysis of Upper Eocene shallow-water carbonates from the Rodnei Mountains (N Romania), Studia Univ. Babes-Bolyai Geol., 2008, vol. 53, no. 2, pp. 13–24.

    Google Scholar 

  56. Satian, M.A. and Stepanyan, Zh.O., Facies and paleogeography of the Yerevan–Vedinsk Trough in the Danian–Paleocene, Izv. AN ArmSSR. Nauki Zemle, 1966, no. 1/2, pp. 34–42.

  57. Schaub, H., Nummulites et Assilines de la Tethys Paleogene. Taxonomie, phylogénèse et biostratigraphie, Schweizer. Paläontol. Abhandl., 1981, vol. 104/106, pp. 1–236.

    Google Scholar 

  58. Serra-Kiel, J., Hottinger, L., Caus, E., et al., Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene, Bull. Soc. Géol. Fr., 1998, vol. 169, pp. 281–299.

    Google Scholar 

  59. Sosson, M., Rolland, Y., Muller, C., et al., Subduction, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia): new insights, Spec. Publ. Geol. Soc. London, 2010, vol. 340, pp. 329‒352.

    Article  Google Scholar 

  60. Speijer, R.P., Pälike, H., Hollis, C.J., et al., The geological time scale 2020, in The Paleogene Period, Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., Eds., Amsterdam: Elsevier, 2020, pp. 1087–1140.

    Book  Google Scholar 

  61. Toker, E., Akkiraz, M.S., Yağmurlu, F., et al., Sedimentary properties of the Middle-Upper Eocene formations in Çardak, Burdur and İncesu, SW Turkey, Turk. J. Earth Sci., 2012, vol. 21, pp. 335–373.

    Google Scholar 

  62. Topuz, G., Okay, A.I., Altherr, R., et al., Post-collisional adakite-like magmatism in the Ağvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey), Lithos, 2011, vol. 125, pp. 131–150.

    Article  Google Scholar 

  63. Tucker, M.E. and Write, V.P., Carbonate Sedimentology, Oxford: Blackwell, 1990.

    Book  Google Scholar 

  64. Vandenberghe, N., Hilgen, F.J., and Speijer, R.P., The geological time scale 2012, in The Paleogene Period, Gradstein, F.M., Ogg, J.G., and Schmitz, M.D., and Ogg, G.M., Eds., Amsterdam: Elsevier, 2012, pp. 855–921.

    Book  Google Scholar 

  65. Wulf, G.V., Sposob graficheskogo resheniya zadach po kosmografii i matematicheskoi geografii (Method for the Graphic Resolution of Problems in Cosmographics and Mathematic Geography), Nizhnii Novgorod: Volkov Publ. Co., 1909.

  66. Zakrevskaya, E., Stupin, S., and Bugrova, E., Biostratigraphy of larger foraminifera in the Eocene (upper Ypresian–lower Bartonian) sequences of the southern slope of the western Caucasus (Russia, NE Black Sea). Correlation with regional and standard planktonic foraminiferal zones, Geol. Acta, 2009, vol. 7, nos. 1/2, pp. 259–279.

    Google Scholar 

  67. Zakrevskaya, E., Beniamovsky, V., Less, G., and Baldi-Beke, M., Integrated biostratigraphy of Eocene deposits in the Gubs section (northern Caucasus) with special attention to the Ypresian/Lutetian boundary and to the Peritethyan-Tethyan correlation, Turk. J. Earth Sci., 2011, vol. 20, pp. 753–792.

    Google Scholar 

  68. Zakrevskaya, E.Yu., Sahakyan, L.G., and Voloshina, O.V., Lithological structure, stratigraphic position and nomenclature of the Paleogene Nummulites millecaput Horizon in southern Armenia, in Materialy 62-i sessii Paleontologicheskogo Obshchestva (Materials of the 62nd Session of the Paleontological Society), St. Petersburg: VSEGEI, 2016, pp. 64–66.

  69. Zakrevskaya, E., Less, G., Bugrova, E., et al., Integrated biostratigraphy and benthic foraminifera of the Middle-Upper Eocene deposits of Urtsadzor section (southern Armenia), Turk. J. Earth Sci., 2020, vol. 29, pp. 896–945.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the peers for carefully reading the manuscript, constructive remarks, and useful corrections.

Funding

This work was supported financially by the Russian Foundation for Basic Research and by the Science Committee of the Ministry of Education, Science, Culture, and Sport of the Armenian Republic under the joint project nos. 18-55-05017 Arm_a (P.A. Fokin and E.Ju. Zakrevskaya) and SCS18RF-090 (L.G. Sahakyan and T.E. Grigoryan).

The work of E.Ju. Zakrevskaya was accomplished under the State Task of the Vernadsky State Geological Musem, Russian Academy of Sciences (project no. 0140-2019-0005). The work of P.A. Fokin was supported by the Russian Foundation for Basic Research (project no. 18-05-00495a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Fokin.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokin, P.A., Zakrevskaya, E.Y., Sahakyan, L.G. et al. Composition and Formation Conditions of Lower Eocene Shallow-Marine Carbonates in Southern Armenia. Lithol Miner Resour 56, 438–459 (2021). https://doi.org/10.1134/S0024490221040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490221040039

Keywords:

Navigation