Skip to main content
Log in

A Qualitative Proteome-Wide Lysine Succinylation Profiling of Tea Revealed its Involvement in Primary Metabolism

  • PROTEOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Lysine succinylation of proteins has potential impacts on protein structure and function, which occurs on post-translation level. However, the information about the succinylation of proteins in tea plants is limited. In the present study, the significant signal of succinylation in tea plants was found by western blot. Subsequently, we performed a qualitative analysis to globally identify the lysine succinylation of proteins using high accuracy nano LC-MS/MS combined with affinity purification. As a result, a total of 142 lysine succinylation sites were identified on 86 proteins in tea leaves. The identified succinylated proteins were involved in various biological processes and a large proportion of the succinylation sites were presented on proteins in the primary metabolism, including glyoxylate and dicarboxylate metabolism, TCA cycle and glycine, serine and threonine metabolism. Moreover, 10 new succinylation sites were detected on histones in tea leaves. The results suggest that succinylated proteins in tea plants might play critical regulatory roles in biological processes, especially in the primary metabolism. This study not only comprehensively analyzed the lysine succinylome in tea plants, but also provided valuable information for further investigating the functions of lysine succinylation in tea plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Witze E.S., Old W.M., Resing K.A., Ahn N.G. 2007. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods.4 (10), 798‒806.

    Article  CAS  Google Scholar 

  2. Pan J., Chen R., Li C., Li W., Ye Z. 2015. Global analysis of protein lysine succinylation profiles and their overlap with lysine acetylation in the marine bacterium Vibrio parahemolyticus.J. Proteome Res.14 (10), 4309–4318.

    Article  CAS  Google Scholar 

  3. Xie Z., Dai J., Dai L., Tan M., Cheng Z., Wu Y., Boeke J.D., Zhao Y. 2012. Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics.11(5), 100‒107.

    Article  CAS  Google Scholar 

  4. Zhang Z., Tan M., Xie Z., Dai L., Chen Y., Zhao Y. 2011. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol.7 (1), 58‒63.

    Article  CAS  Google Scholar 

  5. Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H. 2011. Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science.334 (6057), 806‒809.

    Article  CAS  Google Scholar 

  6. Weinert B., Schölz C., Wagner S., Iesmantavicius V., Su D., Daniel J., Choudhary C. 2013. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep.4 (4), 842‒851.

    Article  CAS  Google Scholar 

  7. Xie L., Liu W., Li Q., Chen S., Xu M., Huang Q., Zeng J., Zhou M., Xie J. 2014. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J. Proteome Res.14 (1), 107‒119.

    Article  Google Scholar 

  8. Cheng Y., Hou T., Ping J., Chen G., Chen J. 2016. Quantitative succinylome analysis in the liver of non-alcoholic fatty liver disease rat model. Proteome Sci.14 (1), 3.

    Article  Google Scholar 

  9. Xie L., Li J., Deng W., Yu Z., Fang W., Chen M., Liao W., Xie J., Pan W. 2017. Proteomic analysis of lysine succinylation of the human pathogen Histoplasma capsulatum.J. Proteomics.154, 109‒117.

    Article  CAS  Google Scholar 

  10. Jin W., Wu F. 2016. Proteome-wide identification of lysine succinylation in the proteins of tomato (Solanum lycopersicum). PLoS One.11 (2), e0147586.

    Article  Google Scholar 

  11. Zhang Y., Wang G., Song L., Mu P., Wang S., Liang W., Lin Q. 2017. Global analysis of protein lysine succinylation profiles in common wheat. BMC Genomics.18 (1), 309.

    Article  Google Scholar 

  12. Feng S., Jiao K., Guo H., Jiang M., Hao J., Wang H., Shen C. 2017. Succinyl-proteome profiling of Dendrobium officinale, an important traditional Chinese orchid herb, revealed involvement of succinylation in the glycolysis pathway. BMC Genomics.18 (1), 598.

    Article  Google Scholar 

  13. Smestad J., Erber L., Chen Y., Maher L.J. 3rd. 2018. Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. iSience.2, 63–75.

  14. Xu Y.X., Shen C.J., Ma J.Q., Chen W., Mao J., Zhou Y.Y., Chen L. 2017. Quantitative succinyl-proteome profiling of Camellia sinensis cv. ‘Anji Baicha’ during periodic albinism. Sci. Rep.7 (1), 1873.

    Article  Google Scholar 

  15. Tyanova S., Temu T., Cox J. 2016. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc.11 (12), 2301‒2319.

    Article  CAS  Google Scholar 

  16. Young M.D., Wakefield M.J., Smyth G.K., Oshlack A. 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol.11 (2), R14.

    Article  Google Scholar 

  17. Zhen S., Deng X., Wang J., Zhu G., Cao H., Yuan L., Yan Y. 2016. First comprehensive proteome analyses of lysine acetylation and succinylation in seedling leaves of Brachypodium distachyon L. Sci. Rep.6, 31576.

    Article  CAS  Google Scholar 

  18. Shen C., Xue J., Sun T., Guo H., Zhang L., Meng Y., Wang H. 2016. Succinyl-proteome profiling of a high taxol containing hybrid Taxus species (Taxus × media) revealed involvement of succinylation in multiple metabolic pathways. Sci. Rep.6, 21764.

    Article  CAS  Google Scholar 

  19. Li X., Hu X., Wan Y., Xie G., Li X., Chen D., Cheng Z., Yi X., Liang S., Tan F. 2014. Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii.J. Proteome Res.13 (12), 6087–6095.

    Article  CAS  Google Scholar 

  20. Bhavani B.S. 2009. Structure-function relationships in serine hydroxymethyltransferase. Ph.D. Thesis in Biochemistry, Univ. of Misore, Mysore, India.

  21. Besson V., Neuburger M., Rebeille F., Douce R. 1995. Evidence for three serine hydroxymethyltransferases in green leaf cells. Purification and characterization of the mitochondrial and chloroplastic isoforms. Plant Physiol. Biochem.33 (6), 665‒673.

    CAS  Google Scholar 

  22. Gardeström P., Edwards G.E., Henricson D., Ericson I. 2010. The localization of serine hydroxymethyltransferase in leaves of C3 and C4 species. Physiol. Plant.64 (1), 29‒33.

    Article  Google Scholar 

  23. Neuburger M., Rébeillé F., Jourdain A., Nakamura S., Douce R. 1996. Mitochondria are a major site for folate and thymidylate synthesis in plants. J. Biol. Chem.271 (16), 9466‒9472.

    Article  CAS  Google Scholar 

  24. Turner SR., Ireland RJ., Morgan C., Rawsthorne S. 1992. Identification and localization of multiple forms of serine hydroxymethyl transferase in pea (Pisum sativum) and characterization of a cDNA encoding a mitochondrial isoform. J. Biol. Chem.267 (19), 13528‒13534.

    CAS  PubMed  Google Scholar 

  25. Rebeille F., Neuburger M., Douce R. 1994. Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem. J.302 (1), 223‒228.

    Article  CAS  Google Scholar 

  26. Zhang Y., Sun K., Sandoval FJ., Santiago K., Roje S. 2010. One-carbon metabolism in plants: Characterization of a plastid serine hydroxymethyltransferase. Biochem. J.430 (1), 97‒105.

    Article  CAS  Google Scholar 

  27. Mouillon JM., Aubert S., Bourguignon J., Gout E., Douce R., Rebeille F. 2010. Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. Plant J.20 (2), 197‒205.

    Article  Google Scholar 

  28. Li M., Limei C. 2008. The research advances on serine hydroxymethyltransferase gene in plants. Biotechnol. Bull. 2, 15‒19.

    Google Scholar 

  29. Moreno J.I., Martín R., Castresana C. 2010. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J.41 (3), 451‒463.

    Article  Google Scholar 

  30. Wang D., Liu H., Li S., Zhai G., Shao J., Tao Y. 2015. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice. J. Integr. Plant Biol.57 (9), 745‒756.

    Article  CAS  Google Scholar 

  31. Zhang Z., Mao X., Ou J., Ye N., Zhang J., Peng X. 2015. Distinct photorespiratory reactions are preferentially catalyzed by glutamate:glyoxylate and serine:glyoxylate aminotransferases in rice. J. Photochem. Photobiol. B.142 (142C), 110‒117.

    Article  CAS  Google Scholar 

  32. Liang Y., Zeng X., Peng X., Hou X. 2018. Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics. Transgenic Res.27 (1), 1‒14.

    Article  Google Scholar 

  33. Liepman AH., Olsen L.J. 2010. Peroxisomal alanine:glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana.Plant J.25 (5), 487‒498.

    Article  Google Scholar 

  34. Zhang Q., Lee J., Pandurangan S., Clarke M., Pajak A., Marsolais F. 2013. Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase. Phytochemistry.85 (2), 30‒35.

    Article  CAS  Google Scholar 

  35. Abogadallah G.M. 2011. Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci.180 (3), 540‒547.

    Article  CAS  Google Scholar 

  36. Taler D., Galperin M., Benjamin I., Cohen Y., Kenigsbuch D. 2004. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell.16 (1), 172‒184.

    Article  CAS  Google Scholar 

  37. Yang L., Han H., Liu M., Zuo Z., Zhou K., Lü J., Zhu Y., Bai Y., Wang Y. 2013. Overexpression of the Arabidopsis photorespiratory pathway gene, serine:glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tiss. Organ Cult.113 (3), 407‒416.

    Article  CAS  Google Scholar 

  38. Igarashi D., Miwa T., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K., Ohsumi C. 2010. Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis.Plant J.33 (6), 975‒987.

    Article  Google Scholar 

  39. Liepman A.H., Olsen L.J. 2003. Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis.Plant Physiol.131 (1), 215‒227.

    Article  CAS  Google Scholar 

  40. Igarashi D., Tsuchida H., Miyao M., Ohsumi C. 2006. Glutamate:glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol.142 (3), 901‒910.

    Article  CAS  Google Scholar 

  41. Przybyla-Zawislak B., Dennis R.A., Zakharkin S.O., McCammon M.T. 1998. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae.Eur. J. Biochem.258 (2), 736‒743.

    Article  CAS  Google Scholar 

  42. Timm S., Wittmiß M., Gamlien S., Ewald R., Florian A., Frank M., Wirtz M., Hell R., Fernie A.R., Bauwe H. 2015. Mitochondrial dihydrolipoyl dehydrogenase activity shapes hotosynthesis and photorespiration of Arabidopsis thaliana.Plant Cell.27 (7), 1968‒1984.

    Article  CAS  Google Scholar 

Download references

FUNDING

This work was funded by the Significant Application Projects of Agriculture Technology Innovation in Shandong Province, the Technology System of Modern Agricultural Industry in Shandong Province (SDAIT-19-01) and the Special Foundation for Distinguished Taishan Scholar of Shangdong Province (no. ts201712057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. T. Ding.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans or animals as subjects of research.

Conflict of Interest. The authors declare that they have no conflict of interest.

Supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, C., Wang, Y., Sun, J.H. et al. A Qualitative Proteome-Wide Lysine Succinylation Profiling of Tea Revealed its Involvement in Primary Metabolism. Mol Biol 54, 144–155 (2020). https://doi.org/10.1134/S0026893320010124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010124

Keywords:

Navigation