Skip to main content
Log in

Noncoding Polymorphism rs6832151 Is an Attractive Candidate for Genome Editing Aimed at Finding New Molecular Mechanisms of Autoimmune Diseases

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Currently only a small fraction of the proteins encoded in the human genome serve as pharmaceutical targets. Genome-wide association studies are a powerful tool to uncover new genetic loci responsible for predisposition to complex diseases, such as autoimmune disorders. However, further work is still required to identify causative single-nucleotide polymorphisms (SNPs) which directly mediate the disease risk at these loci, and to determine their target genes. These genes can be located millions base pairs away from the regulatory SNPs. Here, by using bioinformatic tools and databases, we identified five intergenic autoimmunity-associated polymorphisms with high probability of being causative, for which the target genes are still unknown. We tested their ability to influence gene expression using luciferase reporter system. The polymorphism rs6832151 affected the reporter expression in the CEM human T-cell line upon the highest enhancer activity. Target genes of this SNP could be further identified by introducing point mutations to the genome and comparison of transcriptomes of the derivative cell sublines carrying alternative alleles of rs6832151.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Gutierrez-Arcelus M., Rich S.S., Raychaudhuri S. 2016. Autoimmune diseases: Connecting risk alleles with molecular traits of the immune system. Nat. Rev. Genet. 17 (3), 160.

    Article  Google Scholar 

  2. Theofilopoulos A.N., Kono D.H., Baccala R. 2017. The multiple pathways to autoimmunity. Nat. Immunol.18 (7), 716.

    Article  CAS  Google Scholar 

  3. Costenbade K.H., Gay S., Alarcón-Riquelme M.E., Iaccarino L., Doria A. 2012. Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun. Rev.11 (8), 604–609.

    Article  Google Scholar 

  4. Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium (TASC), Burton P.R., Clayton D.G., Cardon L.R., Craddock N., Deloukas P., Duncanson A., Kwiatkowski D.P., McCarthy M.I., Ouwehand W.H., Samani N.J., Todd J.A., Donnelly P., et al. 2007. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet.39 (11), 1329.

    Article  Google Scholar 

  5. Farh K.K.H., Marson A., Zhu J., Kleinewietfeld M., Housley W.J., Beik S., Shoresh N., Whitton H., Ryan R.J.H., Shishkin A.A., Hatan M., Carrasco-Alfonso M.J., Mayer D., Luckey C.J., Patsopoulos N.A., et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 518 (7539), 337–343.

    Article  CAS  Google Scholar 

  6. Zhu Y., Tazearslan C., Suh Y. 2017. Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Exp. Biol. Med.242 (13), 1325–1334.

    Article  CAS  Google Scholar 

  7. Gallagher M.D., Chen-Plotkin A.S. 2018. The post-GWAS era: From association to function. Am. J. Hum. Genet.102 (5), 717–730.

    Article  CAS  Google Scholar 

  8. Murphy A., Chu J.H., Xu M., Carey V.J., Lazarus R., Liu A., Szefler S.J., Strunk R., Demuth K., Castro M., Hansel N.N., Diette G.B., Vonakis B.M., Adkin-son N.F.J., Klanderman B.J., et al. 2010. Mapping of numerous disease-associated expression polymorphisms in primary peripheral blood CD4+ lymphocytes. Hum. Mol. Genet.19 (23), 4745–4757.

    Article  CAS  Google Scholar 

  9. Spain S.L., Barrett J.C. 2015. Strategies for fine-mapping complex traits. Hum. Mol. Genet.24 (R1), R111–R119.

    Article  CAS  Google Scholar 

  10. ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature. 489 (7414), 57–74.

    Article  Google Scholar 

  11. Gorbacheva A.M., Korneev K.V., Kuprash D.V., Mitkin N.A. 2018. The risk G allele of the single-nucleotide polymorphism rs928413 creates a CREB1-binding site that activates IL33 Promoter in lung epithelial cells. Int. J. Mol. Sci.19 (10), 2911.

    Article  Google Scholar 

  12. Bernstein B.E., Stamatoyannopoulos J.A., Costello J.F., Ren B., Milosavljevic A., Meissner A., Kellis M., Marra M.A., Beaudet A.L., Ecker J.R., Farnham P.J., Hirst M., Lander E.S., Mikkelsen T.S., Thomson J.A. 2010. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol.28 (10), 1045–1048.

    Article  CAS  Google Scholar 

  13. Vorontsov I.E., Kulakovskiy I.V., Khimulya G., Nikolaeva D.D., Makeev V.J. 2015. PERFECTOS-APE ‒ Predicting regulatory functional effect of SNPs by approximate P-value estimation. In International Conference on Bioinformatics Models, Methods and Algorithms, vol. 2. SCITEPRESS, pp. 102–108.

  14. Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S., Sharipov R.N., Fedorova A.D., Rumynskiy E.I., Medvedeva Y.A., Magana-Mora A., Bajic V.B., Papatsenko D.A., Kolpakov F.A., Makeev V.J. 2018. HOCOMOCO: Towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res.46 (D1), D252–D259.

    Article  CAS  Google Scholar 

  15. Sandelin A., Alkema W., Engström P., Wasserman W.W., Lenhard B. 2004. JASPAR: An open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res.32 (Suppl. 1), D91–D94.

    Article  CAS  Google Scholar 

  16. Jolma A., Kivioja T., Toivonen J., Cheng L., Wei G., Enge M., Taipale M., Vaquerizas J.M., Yan J., Sillanpää M.J., Bonke M., Palin K., Talukder S., Hughes T.R., Luscombe N.M., et al. 2010. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res.20 (6), 861–873.

    Article  CAS  Google Scholar 

  17. Pogulis R.J., Vallejo A.N., Pease L.R. 1996. In vitro recombination and mutagenesis by overlap extension PCR. In: In Vitro Mutagenesis Protocols. Humana Press, pp. 167–176

    Google Scholar 

  18. Ustiugova A.S., Korneev K.V., Kuprash D.V., Afanasyeva M.A. 2019. Functional SNPs in the human autoimmunity-associated locus 17q12-21. Genes (Basel). 10 (2), 77.

    Article  CAS  Google Scholar 

  19. Korneev K.V., Sviriaeva E.N., Mitkin N.A., Gorbacheva A.M., Uvarova A.N., Ustiugova A.S., Polanovsky O.L., Kulakovskiy I.V., Afanasyeva M.A., Schwartz A.M., Kuprash D.V. 2020. Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression. Biochim. Biophys. Acta: Mol. Basis Dis.1866 (3), 165626.

  20. Mitkin N.A., Muratova A.M., Korneev K.V., Pavshintsev V.V., Rumyantsev K.A., Vagida M.S., Uvarova A.N., Afanasyeva M.A., Schwartz A.M., Kuprash D.V. 2018. Protective C allele of the single-nucleotide polymorphism rs1335532 is associated with strong binding of Ascl2 transcription factor and elevated CD58 expression in B-cells. Biochim. Biophys. Acta: Mol. Basis Dis.1864 (10), 3211–3220.

  21. Buckley M., Gjyshi A., Mendoza-Fandiño G., Baskin R., Carvalho R.S., Carvalho M.A., Woods N.T., Monteiro A.N. 2016. Enhancer scanning to locate regulatory regions in genomic loci. Nat. Protoc.11 (1), 46.

    Article  CAS  Google Scholar 

  22. Kotelnikova E., Kiani N.A., Messinis D., Pertsovskaya I., Pliaka V., Bernardo-Faura M., Rinas M., Vila G., Zubizarreta I., Pulido-Valdeolivas I., Sakellaropoulos T., Faigle W., Silberberg G., Masso M., Stridh P., et al. 2019. MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis. Proc. Natl. Acad. Sci. U. S. A.116 (19), 9671–9676.

    Article  CAS  Google Scholar 

  23. Schmiedel B.J., Singh D., Madrigal A., Valdovino-Gonzalez A.G., White B.M., Zapardiel-Gonzalo J., Ha B., Altay G., Greenbaum J.A., McVicker G., Seumois G., Rao A., Kronenberg M., Peters B., Vijayanand P. 2018. Impact of genetic polymorphisms on human immune cell gene expression. Cell. 175 (6), 1701–1715.

    Article  CAS  Google Scholar 

  24. GTEx Consortium. 2013. The genotype-tissue expression (GTEx) project. Nat. Genet.45 (6), 580.

    Article  Google Scholar 

  25. Yevshin I., Sharipov R., Kolmykov S., Kondrakhin Y., Kolpakov F. 2019. GTRD: A database on gene transcription regulation—2019 update. Nucleic Acids Res.47 (D1), D100–D105.

    Article  CAS  Google Scholar 

  26. Chandra J., Kuo P.T., Hahn A.M., Belz G.T., Frazer I.H. 2017. Batf3 selectively determines acquisition of CD8+ dendritic cell phenotype and function. Immunol. Cell Biol.95 (2), 215–223.

    Article  CAS  Google Scholar 

  27. Almuttaqi H., Udalova I.A. 2019. Advances and challenges in targeting IRF5, a key regulator of inflammation. FEBS J.286 (9), 1624–1637.

    Article  CAS  Google Scholar 

  28. Cortes A., Brown M.A. 2011. Promise and pitfalls of the Immunochip. Arthritis Res. Ther.13 (1), 101.

    Article  Google Scholar 

  29. Corradin O., Saiakhova A., Akhtar-Zaidi B., Myeroff L., Willis J., Cowper-Sal R., Lupien M., Markowitz S., Scacheri P.C. 2014. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res.24 (1), 1–13.

    Article  CAS  Google Scholar 

  30. Sanyal A., Lajoie B.R., Jain G., Dekker J. 2012. The long-range interaction landscape of gene promoters. Nature. 489 (7414), 109–113.

    Article  CAS  Google Scholar 

  31. Szymański K., Bednarczuk T., Krajewski P., Płoski R. 2012. The replication of the association of the rs6832151 within chromosomal band 4p14 with Graves’ disease in a Polish Caucasian population. Tissue Antigens. 79 (5), 380–383.

    Article  Google Scholar 

  32. Chu X., Pan C.M., Zhao S.X., Liang J., Gao G.Q., Zhang X.M., Yuan G.Y., Li C.G., Xue L.Q., Shen M., Liu W., Xie F., Yang S.Y., Wang H.F., Shi J.Y., et al. 2011. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat. Genet.43 (9), 897.

    Article  CAS  Google Scholar 

  33. Cooper J.D., Simmonds M.J., Walker N.M., Burren O., Brand O.J., Guo H., Wallace C., Stevens H., Coleman G., Wellcome Trust Case Control Consortium, Franklyn J.A., Todd J.A., Gough S.C.L. 2012. Seven newly identified loci for autoimmune thyroid disease. Hum. Mol. Genet.21 (23), 5202–5208.

    Article  CAS  Google Scholar 

  34. Van der Meer L.T., Jansen J.H., Van Der Reijden B.A. 2010. Gfi1 and Gfi1b: Key regulators of hematopoiesis. Leukemia. 24 (11), 1834.

    Article  CAS  Google Scholar 

  35. Ghandi M., Huang F.W., Jané-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R., Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., et al. 2019. Next-generation characterization of the cancer cell line encyclopedia. Nature. 569 (7757), 503–508.

    Article  CAS  Google Scholar 

  36. Foley G.E., Lazarus H., Farber S., Uzman B.G., Boone B.A., McCarthy R.E. 1965. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer. 18 (4), 522–529.

    Article  CAS  Google Scholar 

  37. Schneider U., Schwenk H.U., Bornkamm G. 1977. Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer. 19 (5), 621–626.

    Article  CAS  Google Scholar 

  38. Hamano R., Wu X., Wang Y., Oppenheim J.J., Chen X. 2015. Characterization of MT-2 cells as a human regulatory T cell-like cell line. Cell. Mol. Immunol.12 (6), 780–782.

    Article  CAS  Google Scholar 

  39. Matsuo Y., Drexler H.G. 1998. Establishment and characterization of human B cell precursor-leukemia cell lines. Leuk. Res. 22 (7), 567–579.

    Article  CAS  Google Scholar 

  40. Pistillo M.P., Tanigaki N., Mazzoleni O., Ciccone E., Hämmerling U., Park M., Terasaki P.I., Ferrara, G.B. 1987. Human lymphoblastoid cell lines secreting antibodies with restricted HLA specificity. Immunogenetics. 25 (3), 145–151.

    Article  CAS  Google Scholar 

  41. Karpova M.B., Schoumans J., Ernberg I., Henter J.I., Nordenskjöld M., Fadeel B. 2005. Raji revisited: cytogenetics of the original Burkitt’s lymphoma cell line. Leukemia. 19 (1), 159–161.

    Article  CAS  Google Scholar 

  42. Klein G., Lindahl T., Jondal M., Leibold W., Menézes J., Nilsson K., Sundström C. 1974. Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein–Barr virus genome and derived from three human lymphomas. Proc. Natl. Acad. Sci. U. S. A.71 (8), 3283–3286.

    Article  CAS  Google Scholar 

  43. Sundström C., Nilsson K. 1976. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int. J. Cancer.17 (5), 565–577.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are especially grateful to I.E. Vorontsov for help in editing and designing this acticle.

Funding

The study was carried out with the financial support of the Russian Science Foundation (project no. 18-75-00072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ustiugova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This study does not contain any research involving humans or animals as research objects.

Conflict of interest. The authors declare they have no conflict of interest.

SUPPLEMENTARY MATERIALS

Supplementary materials are available for this article at https://doi.org/10.1134/S0026893320040160 and are accessible for authorized users.

Additional information

Abbreviations: TF, transcription factor; eQTL, expression quantitative trait loci; GWAS, Genome-wide association studies; GFI1, Growth Factor Independent 1 Transcriptional Repressor; PICS, Probabilistic Identification of Causal SNPs; SNP, single nucleotide polymorphism; H3K27Ac, acetylation of lysine 27 on histone H3 protein subunit; ENCODE, Encyclopedia of DNA Elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustiugova, A.S., Afanasyeva, M.A. Noncoding Polymorphism rs6832151 Is an Attractive Candidate for Genome Editing Aimed at Finding New Molecular Mechanisms of Autoimmune Diseases. Mol Biol 54, 730–738 (2020). https://doi.org/10.1134/S0026893320040160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320040160

Keywords:

Navigation