Skip to main content
Log in

Control of parameters of quantum memory for light in a cavity configuration

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Control of time dependences of waveforms is important for the application of optical signals in the nonclassical state that are recorded in various quantum-memory devices. Matching of waveforms at the signal detectors is needed for measurements using optical mixing (homodyne detection), detection of entangled states, etc. Earlier results for cavity quantum memory on an ensemble of cold atoms show that the waveform of the strong control field can be changed in such a way that the profile of optical signal recorded and readout from a collective atomic spin is convenient for measurements. In the course of recording, the control field provides the suppression of the reflection loss of the input signal related to the destructive interference of the signal and local field at the coupling mirror (impedance matching). Using an example of memory reading, we show that impedance matching provides additional possibilities for variations in the control field and allows efficient generation of output quantum signals with predetermined waveforms convenient for experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041 (2010).

    Article  ADS  Google Scholar 

  2. C. Simon, M. Afzelius, J. Appel, et al., Eur. Phys. J. D 58, 1 (2010).

    Article  ADS  Google Scholar 

  3. A. L. Lvovsky, B. C. Sanders, and W. Tittel, Nature Photon. 3, 706 (2009).

    Article  ADS  Google Scholar 

  4. E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, Phys. Rev. Lett. 112, 033601 (2014).

    Article  ADS  Google Scholar 

  5. J. Stanojevic, V. Parigi, E. Bimbard, R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, Phys. Rev. A 84, 053830 (2011).

    Article  ADS  Google Scholar 

  6. A. V. Gorshkov, A. Andre, M. D. Lukin, and A. S. Sørensen, Phys. Rev. A 76, 033804 (2007).

    Article  ADS  Google Scholar 

  7. A. Kalachev, Phys. Rev. A 78, 043812 (2008).

    Article  ADS  Google Scholar 

  8. J. Dilley, P. Nisbet, B. W. Shore, and A. Kuhn, Phys. Rev. A 85, 023834 (2012).

    Article  ADS  Google Scholar 

  9. A. N. Vetlugin and I. V. Sokolov, Opt. Spectrosc. 115, 875 (2013).

    Article  ADS  Google Scholar 

  10. A. N. Vetlugin and I. V. Sokolov, Eur. Phys. J. D 68, 269 (2014).

    Article  ADS  Google Scholar 

  11. A. V. Turlapov, JETP Lett. 95, 96 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sokolov.

Additional information

Original Russian Text © V.V. Kuz’min, A.N. Vetlugin, I.V. Sokolov, 2015, published in Optika i Spektroskopiya, 2015, Vol. 119, No. 6, pp. 1000–1006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’min, V.V., Vetlugin, A.N. & Sokolov, I.V. Control of parameters of quantum memory for light in a cavity configuration. Opt. Spectrosc. 119, 1004–1009 (2015). https://doi.org/10.1134/S0030400X15120152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15120152

Keywords

Navigation