Skip to main content
Log in

A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A quantum transistor based quantum computer where the multiqubit quantum memory is a component of the quantum transistor and, correspondingly, takes part in the performance of quantum logical operations is considered. Proceeding from the generalized Jaynes–Cummings model, equations for coefficients of the wave function of the quantum system under consideration have been obtained for different stages of its evolution in processes of performing logical operations. The solution of the system of equations allows one to establish requirements that are imposed on the parameters of the initial Hamiltonian and must be satisfied for the effective operation of the computer; it also demonstrates the possibility of a universal set of quantum operations. Thus, based on the proposed approach, the possibility of constructing a compact multiatomic ensemble based on quantum computer using a quantum transistor for the implementation of two-qubit gates has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jain, in Proceedings of the 2nd International Conference on Computing for Sustainable Global Development, New Delphi (IEEE, 2015), p. 2165.

    Google Scholar 

  2. G. Kurizki, P. Bertet, Yu. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, Proc. Natl. Acad. Sci. 112, 3866 (2015).

    Article  ADS  Google Scholar 

  3. Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).

    Article  ADS  Google Scholar 

  4. P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, in Hybrid Mechanical Systems. Cavity Optomechanics, Ed. by F. Marquardt, M. Aspelmeyer, and T. Kippenberg (Springer, Berlin, 2014).

  5. M. D. Reed, B. R. Johnson, A. A. L. Houck, J. M. DiCarlo, D. I. Chow, L. Schuster, L. Frunzio, and R. J. Schoelkopf, Appl. Phys. Lett. 96, 203110 (2010).

    Article  ADS  Google Scholar 

  6. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

    Article  ADS  Google Scholar 

  7. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, et al., Eur. Phys. J. D 58 (4), 1 (2010).

    Article  ADS  Google Scholar 

  8. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517 (7533), 177 (2015).

    Article  ADS  Google Scholar 

  9. C. A. Pérez-Delgado and P. Kok, Phys. Rev. A 83, 029903 (2011).

    Article  ADS  Google Scholar 

  10. K. I. Gerasimov, S. A. Moiseev, V. I. Morosov, and R. B. Zaripov, Phys. Rev. A 90, 042306 (2014).

    Article  ADS  Google Scholar 

  11. C. Grezes, B. Julsgaard, Y. Kubo, M. Stern, T. Umeda, J. Isoya, H. Sumiya, H. Abe, S. Onoda, T. Ohshima, V. Jacques, J. Esteve, D. Vion, D. Esteve, K. Mølmer, and P. Bertet, Phys. Rev. X 4, 021049 (2014).

    Google Scholar 

  12. M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).

    Article  ADS  Google Scholar 

  13. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, Nat. Photon. 9, 83 (2015).

    Article  ADS  Google Scholar 

  14. J.-Sh. Tang, Z.-Q. Zhoul, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, Sh. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, et al., Nat. Commun. 6 (8652), 1 (2015).

    ADS  Google Scholar 

  15. M. Hosseini, S. Rebic, B. M. Sparkes, J. Twamley, B. C. Buchler, and P. K. Lam, Light: Sci. Appl. 1 (12), 40 (2012).

    Article  Google Scholar 

  16. V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photon. 7, 138 (2013).

    Article  ADS  Google Scholar 

  17. C. Vo, S. Riedl, S. Baur, G. Rempe, and S. Durr, Phys. Rev. Lett. 109, 263602 (2012).

    Article  ADS  Google Scholar 

  18. W. J. Munro, K. Nemoto, and T. P. Spiller, New J. Phys. 7, 137 (2005).

    Article  ADS  Google Scholar 

  19. S. A. Moiseev, A. A. Kamli, and B. C. Sanders, Phys. Rev. A 81, 033839 (2010).

    Article  ADS  Google Scholar 

  20. K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, J. Opt. Soc. Am. B 27, A36 (2010).

    Article  ADS  Google Scholar 

  21. B. He and A. Scherer, Phys. Rev. A 85, 033814 (2012).

    Article  ADS  Google Scholar 

  22. C. Chudzicki, I. L. Chuang, and J. H. Shapiro, Phys. Rev. A 87, 042325 (2013).

    Article  ADS  Google Scholar 

  23. H. M. Alotaibi and B. C. Sanders, Phys. Rev. A 89, 021802(R) (2014).

    Article  ADS  Google Scholar 

  24. S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, arXiv:1108.6156v1 [quant-ph] (2011).

  25. S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, Opt. Spectrosc. 115, 356 (2013).

    Article  ADS  Google Scholar 

  26. W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, Science 341 (6147), 768 (2013).

    Article  ADS  Google Scholar 

  27. H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).

    Article  ADS  Google Scholar 

  28. H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Buchler, I. Lesanovsky, and S. Hofferberth, arXiv:1511.09445v1 [quant-ph] (2015).

  29. W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, Phys. Rev. A 83, 022302 (2011).

    Article  ADS  Google Scholar 

  30. Q. Chen, W. L. Yang, and M. Feng, Phys. Rev. A 86, 022327 (2012).

    Article  ADS  Google Scholar 

  31. M.-J. Tao, M. Hua, Q. Ai, and F.-G. Deng, Phys. Rev. A 91, 062325 (2015).

    Article  ADS  Google Scholar 

  32. S. N. Andrianov and S. A. Moiseev, Quantum Electron. 45, 937 (2015).

    Article  ADS  Google Scholar 

  33. M. Hua, M.-J. Tao, F.-G. Deng, and G. L. Long, Sci. Rep. 5, 14541 (2015).

    Article  ADS  Google Scholar 

  34. D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gerard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, Appl. Phys. Lett. 108, 011112 (2016).

    Article  ADS  Google Scholar 

  35. S. A. Moiseev, V. F. Tarasov, and B. S. Ham, J. Opt. B: Quantum Semiclass. Opt. 5, S497 (2003).

    Article  ADS  Google Scholar 

  36. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Nature 465, 1052 (2010).

    Article  ADS  Google Scholar 

  37. I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Nat. Commun. 1, 12 (2010).

    Article  ADS  Google Scholar 

  38. S. A. Moiseev, Phys. Rev. A 83, 012307 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  39. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. le Gouët, New J. Phys 13, 093031 (2011).

    Article  ADS  Google Scholar 

  40. T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nat. Commun. 6 (8206), 1 (2015).

    Google Scholar 

  41. Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).

    Article  ADS  Google Scholar 

  42. E. S. Moiseev and S. A. Moiseev, J. Mod. Opt. doi 10.1080/09500340.2016.1182222

  43. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. de Vincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

    Article  ADS  Google Scholar 

  44. L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys. Rev. A 80, 012104 (2009).

    Article  ADS  Google Scholar 

  45. H.-R. Noh, J. Phys. Soc. Jpn. 84, 094402 (2015).

    Article  ADS  Google Scholar 

  46. M. A. Shallem, R. Kosloff, and N. Moiseyev, New J. Phys. 17, 113036 (2015).

    Article  Google Scholar 

  47. S. A. Moiseev and S. N. Andrianov, J. Phys. B: At., Mol. Opt. Phys. 45, 124017 (2012).

    Article  ADS  Google Scholar 

  48. T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).

    Article  ADS  Google Scholar 

  49. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015).

    Article  ADS  Google Scholar 

  50. S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, Phys. Rev. A 82, 022311 (2010).

    Article  ADS  Google Scholar 

  51. P. Rabl, D. de Mille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006).

    Article  ADS  Google Scholar 

  52. J. H. Wesenberg, A. Ardavan, G. A. D. Briggs, J. J. L. Morton, R. J. Schoelkopf, D. I. Schuster, and K. Mølmer, Phys. Rev. Lett. 103, 070502 (2009).

    Article  ADS  Google Scholar 

  53. W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, Phys. Rev. A 84, 010301 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Moiseev.

Additional information

Original Russian Text © S.A. Moiseev, S.N. Andrianov, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 6, pp. 954–965.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseev, S.A., Andrianov, S.N. A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory. Opt. Spectrosc. 121, 886–896 (2016). https://doi.org/10.1134/S0030400X16120195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16120195

Navigation