Skip to main content
Log in

Collisions of Single-Cycle and Subcycle Attosecond Light Pulses in a Nonlinear Resonant Medium

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

By numerically solving the system of Maxwell–Bloch equations, we have examined theoretically collisions of extremely short single-cycle and unipolar subcycle pulses in a nonlinear resonant medium under conditions that the light interacts coherently with the medium. The dynamics of the electric field of structures of light-induced polarization and inversion difference has been considered in the situation in which pulses are overlapped in the medium. We show that the states of the medium (to the right and to the left of the overlap region of the pulses) may differ. In particular, we show that polarization waves with different characteristics can exist in the regions of the medium that are located on opposite sides of the overlap region of the pulses. These waves travel in different directions and have different spatial frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  2. C. Manzoni et al., Laser Photon. Rev. 9, 129 (2015).

    Article  ADS  Google Scholar 

  3. F. Calegari et al., J. Phys. B: At., Mol. Opt. Phys. 49, 062001 (2016).

    Article  ADS  Google Scholar 

  4. L. Gallmann, C. Cirelli, and U. Keller, Ann. Rev. Phys. Chem. 63, 447 (2012).

    Article  ADS  Google Scholar 

  5. K. Ramasesha, S. R. Leone, and D. M. Neumark, Ann. Rev. Phys. Chem. 67, 41 (2016).

    Article  ADS  Google Scholar 

  6. M. F. Ciappina, J. A. Pérez-Hernández, and A. S. Landsman, Rep. Prog. Phys. 80, 054401 (2017).

    Article  ADS  Google Scholar 

  7. A. S. Landsman and U. Keller, Phys. Rep. 547, 1 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Kozak, J. McNeur, K. J. Leedle, et al., Nat. Commun. 8, 1 (2017).

    Article  Google Scholar 

  9. S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

    Article  ADS  Google Scholar 

  10. D. V. Skryabin and A. V. Gorbach, Rev. Mod. Phys. 82, 1287 (2010).

    Article  ADS  Google Scholar 

  11. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).

    Article  ADS  Google Scholar 

  12. H. Leblond and D. Mihalache, Phys. Rep. 523, 61 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  13. D. U. Mihalache, Roman. Rep. Phys. 69, 403 (2017).

    Google Scholar 

  14. P. G. Kryukov and V. S. Letokhov, Sov. Phys. Usp. 12, 641 (1970).

    Article  ADS  Google Scholar 

  15. I. A. Poluektov, Yu. M. Popov, and V. S. Roitberg, Sov. Phys. Usp. 18, 673 (1975).

    Article  ADS  Google Scholar 

  16. L. Allen and J. Eberly, Optical Resonance and Two- Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  17. A. Zrenner et al., Nature (London, U.K.) 418, 612 (2002).

    Article  ADS  Google Scholar 

  18. T. H. Stievater, L. Xiaoqin, D. G. Stee, et al., Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  19. P. Borri, W. Langbein, S. Schneider, et al., Phys. Rev. B 66, 081306 (2002).

    Article  ADS  Google Scholar 

  20. M. Hosseini, B. M. Sparkes, G. Hétet, et al., Nature (London, U.K.) 461 (7261), 241 (2009).

    Article  ADS  Google Scholar 

  21. M. Kolarczik et al., Nat. Commun. 4, 1 (2013).

    Article  Google Scholar 

  22. O. Karni, A. Capua, G. Eisenstein, et al., Opt. Express 21, 26786 (2013).

    Article  ADS  Google Scholar 

  23. A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, Phys. Rev. B 90, 045305 (2014).

    Article  ADS  Google Scholar 

  24. O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, Phys. Rev. B 91, 115304 (2015).

    Article  ADS  Google Scholar 

  25. O. Karni, A. K. Mishra, G. Eisenstein, V. Ivanov, and J. P. Reithmaier, Optica 3, 570 (2016).

    Article  Google Scholar 

  26. I. A. Khanonkin, A. K. Mishra, O. Karni, et al., arXiv: 1708.06254 (2017).

    Google Scholar 

  27. V. P. Kalosha and J. Herrmann, Phys. Rev. Lett. 83, 544 (1999).

    Article  ADS  Google Scholar 

  28. J. Xiao, Z. Wang, and Z. Xu, Phys. Rev. A 65, 031402 (2002).

    Article  ADS  Google Scholar 

  29. X. Cai, J. Zhao, Z. Wang, and Q. Lin, J. Phys. B: At., Mol. Opt. Phys. 46, 175602 (2013).

    Article  ADS  Google Scholar 

  30. Y. Lin, I. H. Chen, and R. K. Lee, Phys. Rev. A 83, 043828 (2011).

    Article  ADS  Google Scholar 

  31. N. N. Rosanov, V. E. Semenov, and N. V. Vyssotina, Laser Phys. 17, 1311 (2007).

    Article  ADS  Google Scholar 

  32. N. V. Vysotina, N. N. Rozanov, and V. E. Semenov, JETP Lett. 83, 279 (2006).

    Article  ADS  Google Scholar 

  33. N. N. Rosanov, V. E. Semenov, and N. V. Vyssotina, Quantum Electron. 38, 137 (2008).

    Article  ADS  Google Scholar 

  34. N. V. Vysotina, N. N. Rozanov, and V. E. Semenov, Opt. Spectrosc. 106, 713 (2009).

    Article  ADS  Google Scholar 

  35. V. V. Kozlov, N. N. Rosanov, C. D. Angelis, and S. Wabnitz, Phys. Rev. A 84, 023818 (2011).

    Article  ADS  Google Scholar 

  36. N. N. Rozanov, Dissipative Optical Solitons. From Micro- to Nano- and Atto- Scales (Fizmatlit, Moscow, 2011), Chap. 17 [in Russian].

    Google Scholar 

  37. X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, Phys. Rev. A 82, 053821 (2010).

    Article  ADS  Google Scholar 

  38. X. Song, Z. Hao, M. Yan, M. Wu, and W. Yang, Laser Phys. Lett. 12, 105003 (2015).

    Article  ADS  Google Scholar 

  39. S. Hughes, Phys. Rev. Lett. 81, 3363 (1998).

    Article  ADS  Google Scholar 

  40. A. V. Tarasishin, S. A. Magnitskii, and A. M. Zheltikov, Opt. Commun. 193, 187 (2001).

    Article  ADS  Google Scholar 

  41. A. V. Tarasishin, S. A. Magnitskii, V. A. Shuvaev, and A. M. Zheltikov, Opt. Express 8, 452 (2001).

    Article  ADS  Google Scholar 

  42. D. V. Novitsky, Phys. Rev. A 84, 013817 (2011).

    Article  ADS  Google Scholar 

  43. D. V. Novitsky, Phys. Rev. A 85, 043813 (2012).

    Article  ADS  Google Scholar 

  44. D. V. Novitsky, J. Phys. B: At., Mol. Opt. Phys. 47, 095401 (2014).

    Article  ADS  Google Scholar 

  45. D. V. Novitsky, Opt. Commun. 358, 202 (2016).

    Article  ADS  Google Scholar 

  46. R. M. Arkhipov, M. V. Arkhipov, I. V. Babushkin, and N. N. Rosanov, Opt. Spectrosc. 121, 758 (2016).

    Article  ADS  Google Scholar 

  47. R. M. Arkhipov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 41, 4983 (2016).

    Article  ADS  Google Scholar 

  48. R. M. Arkhipov, M. V. Arkhipov, I. V. Babushkin, A. V. Pakhomov, and N. N. Rosanov, Quantum Electron. 47, 589 (2017).

    Article  ADS  Google Scholar 

  49. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, Laser Phys. Lett. 14 (9), 1 (2017).

    Article  Google Scholar 

  50. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Sci. Rep. 7, 12467 (2017).

    Article  ADS  Google Scholar 

  51. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, Opt. Spectrosc. 123, 610 (2017).

    Article  ADS  Google Scholar 

  52. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rozanov, JETP Lett. 105, 408 (2017)

    Article  ADS  Google Scholar 

  53. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rosanov, Laser Phys. 27, 053001 (2017).

    Article  ADS  Google Scholar 

  54. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 141, 391 (1966).

    Article  ADS  Google Scholar 

  55. E. I. Shtyrkov, V. S. Lobkov, and N. G. Yarmukhametov, JETP Lett. 27, 648 (1978).

    ADS  Google Scholar 

  56. S. A. Moiseev and E. I. Shtyrkov, Sov. J. Quantum Electron. 21, 403 (1991).

    Article  ADS  Google Scholar 

  57. E. I. Shtyrkov, Opt. Spectrosc. 114, 96 (2013).

    Article  ADS  Google Scholar 

  58. M. J. Shaw and B. W. Shore, J. Opt. Soc. Am. B 8, 1127 (1990).

    Article  ADS  Google Scholar 

  59. A. A. Afanas’ev, V. M. Volkov, V. V. Dritz, and B. A. Samson, J. Mod. Opt. 37, 165 (1990).

    Article  ADS  Google Scholar 

  60. V. V. Kocharovski, Vl. V. Kocharovski, and E. R. Golubyatnikova, Comput. Math. Appl. 34, 773 (1997).

    Article  Google Scholar 

  61. E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii, Sov. Phys. JETP 73, 422 (1991).

    Google Scholar 

  62. H. J. Eichler, E. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin, New York, Heidelberg, Tokyo, 1981).

    Google Scholar 

  63. M. D. Crisp, Phys. Rev. A 1, 1604 (1970).

    Article  ADS  Google Scholar 

  64. J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).

    Article  ADS  Google Scholar 

  65. M. Bayer and A. Forchel, Phys. Rev. B 65, 041308 (2002).

    Article  ADS  Google Scholar 

  66. S. N. Bagaev, V. S. Egorov, V. G. Nikolaev, I. A. Chechonin, and M. A. Chekhonin, Russ. J. Phys. Chem. B 9, 582 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Arkhipov.

Additional information

Original Russian Text © R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, D.O. Zhiguleva, N.N. Rosanov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 4, pp. 510–517.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V., Pakhomov, A.V. et al. Collisions of Single-Cycle and Subcycle Attosecond Light Pulses in a Nonlinear Resonant Medium. Opt. Spectrosc. 124, 541–548 (2018). https://doi.org/10.1134/S0030400X18040045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18040045

Navigation