Skip to main content
Log in

THz Radiation of Photoconductive Antennas based on {LT-GaAa/GaAa:Si} Superlattice Structures

  • UV, IR, AND TERAHERTZ OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A material in the form of a multilayer structure based on low-temperature LT-GaAs grown on (111)A-oriented substrates is proposed for fabrication of THz photoconductive antennas. These structures contain active LT-GaAs layers and doping acceptor GaAs:Si-based layers. At the optical pump power of 19 mW and the bias voltage of 30 V, a photoconductive antenna based on the optimized {LT-GaAs/GaAs:Si} (111)A structure emits THz pulses with the average power of 2.3 μW at the pulse repetition frequency of 80 MHz; the conversion efficiency is 1.2 × 10–4. It is shown that the dependence of the integral power of THz pulses of the antenna based on the {LT-GaAs/GaAs:Si} (111)A structure on the applied voltage is superlinear; the dependence of this parameter on the optical pump power is plotted as a curve with saturation. It is shown that the designed antennas have a practical application in THz spectroscopy of biological solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Krotkus, J. Phys. D: Appl. Phys. 43, 273001 (2010). https://doi.org/10.1088/0022-3727/43/27/273001

    Article  Google Scholar 

  2. N. M. Burford and M. O. El-Shenawee, Opt. Eng. 56, 010901 (2017). https://doi.org/10.1117/1.OE.56.1.010901

    Article  ADS  Google Scholar 

  3. S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, Laser Photon. Rev. 11, 1600199 (2017). https://doi.org/10.1002/lpor.201600199

    Article  ADS  Google Scholar 

  4. A. E. Yachmenev, D. V. Lavrukhin, I. A. Glinskiy, N. V. Zenchenko, Y. G. Goncharov, I. E. Spektor, R. A. Khabibullin, T. Otsuji, and D. S. Ponomarev, Opt. Eng. 59, 061608 (2019). https://doi.org/10.1117/1.OE.59.6.061608

    Article  Google Scholar 

  5. N. T. Yardimci and M. Jarrahi, Small 14, 1802437 (2018). https://doi.org/10.1016/0039-6028(95)00750-4

    Article  Google Scholar 

  6. S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 4, 575 (2014). https://doi.org/10.1109/TTHZ.2014.2342505

    Article  ADS  Google Scholar 

  7. A. Krotkus and J. L. Coutaz, Semicond. Sci. Technol. 20, S142 (2005). https://doi.org/10.1088/0268-1242/20/7/004

    Article  Google Scholar 

  8. L. G. Lavrent’eva, M. D. Vilisova, V. V. Preobrazhenskii, and V. V. Chaldyshev, Russ. Phys. J. 45, 735 (2002). https://doi.org/10.1023/A:1021965211576

    Article  Google Scholar 

  9. M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, J. Appl. Phys. 88, 6026 (2000). https://doi.org/10.1063/1.1285829

    Article  ADS  Google Scholar 

  10. I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, and M. Missous, Appl. Phys. Lett. 83, 4199 (2003). https://doi.org/10.1063/1.1628389

    Article  ADS  Google Scholar 

  11. K. Moon, J. Choi, J. H. Shin, S. P. Han, H. Ko, N. Kim, and K. H. Park, ETRI J. 36, 159 (2014). https://doi.org/10.4218/etrij.14.0213.0319

    Article  Google Scholar 

  12. A. Krotkus, K. Bertulis, L. Dapkus, U. Olin, and S. Marcinkevicius, Appl. Phys. Lett. 75, 3336 (1999). https://doi.org/10.1063/1.125343

    Article  ADS  Google Scholar 

  13. H. Eusebe, J. F. Roux, J. L. Coutaz, and A. Krotkus, J. Appl. Phys. 98, 033711 (2005). https://doi.org/10.1063/1.2001151

    Article  ADS  Google Scholar 

  14. X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, Appl. Phys. Lett. 65, 3002 (1994). https://doi.org/10.1063/1.112490

    Article  ADS  Google Scholar 

  15. G. B. Galiev, E. A. Klimov, A. N. Klochkov, V. B. Kopylov, and S. S. Pushkarev, Semiconductors 53, 246 (2019). https://doi.org/10.1134/S1063782619020088

    Article  ADS  Google Scholar 

  16. K. A. Kuznetsov, G. B. Galiev, G. Kh. Kitaeva, V. V. Kornienko, E. A. Klimov, A. N. Klochkov, A. A. Leontyev, S. S. Pushkarev, and P. P. Maltsev, Laser Phys. Lett. 15, 076201 (2018). https://doi.org/10.1088/1612-202X/aac7bb

    Article  ADS  Google Scholar 

  17. G. B. Galiev, M. M. Grekhov, G. Kh. Kitaeva, E. A. Klimov, A. N. Klochkov, O. S. Kolentsova, V. V. Kornienko, K. A. Kuznetsov, P. P. Maltsev, and S. S. Pushkarev, Semiconductors 51, 310 (2017). https://doi.org/10.1134/S1063782617030071

    Article  ADS  Google Scholar 

  18. G. B. Galiev, I. N. Trunkin, A. L. Vasiliev, I. S. Vasil’evskii, A. N. Vinichenko, E. A. Klimov, A. N. Klochkov, P. P. Maltsev, and S. S. Pushkarev, Crystallogr. Rep. 64, 205 (2019).

    Article  ADS  Google Scholar 

  19. G. B. Galiev, E. A. Klimov, A. N. Klochkov, S. S. Pushkarev, and P. P. Maltsev, Semiconductors 52, 376 (2018). https://doi.org/10.1134/S1063782618030119

    Article  ADS  Google Scholar 

  20. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, Quantum Electron. 38, 647 (2008). https://doi.org/10.1070/QE2008v038n07ABEH013851

    Article  ADS  Google Scholar 

  21. X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010), Vol. 29.

    Book  Google Scholar 

  22. M. Tani, S. Matsuura, K. Sakai, and S. I. Nakashima, Appl. Opt. 36, 7853 (1997). https://doi.org/10.1364/AO.36.007853

    Article  ADS  Google Scholar 

  23. J. Zhang, Y. Hong, S. L. Braunstein, and K. A. Shore, IEE Proc. Optoelectron. 151, 98 (2004). .https://doi.org/10.1049/ip-opt:20040113

    Article  Google Scholar 

  24. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996). https://doi.org/10.1364/JOSAB.13.002424

    Article  ADS  Google Scholar 

  25. M. M. Nazarov, O. P. Cherkasova, and A. P. Shkurinov, Quantum Electron. 46, 488 (2016). https://doi.org/10.1070/QEL16107

    Article  ADS  Google Scholar 

  26. O. A. Smolyanskaya, N. V. Chernomyrdin, A. A. Konovko, K. I. Zaytsev, I. A. Ozheredov, O. P. Cherkasova, M. M. Nazarov, J. P. Guillet, S. A. Kozlov, Yu. V. Kistenev, J. L. Coutaz, P. Mounaix, V. L. Vaks, J. H. Son, H. Cheon, et al., Prog. Quantum Electron. 62, 1 (2018). https://doi.org/10.1016/j.pquantelec.2018.10.001

    Article  ADS  Google Scholar 

  27. K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, J. Chem. Phys. 146, 105102 (2017). https://doi.org/10.1063/1.4978232

    Article  ADS  Google Scholar 

  28. M. Nazarov, A. Shkurinov, V. V. Tuchin, and X. C. Zhang, in Handbook of Photonics for Biomedical Science, Ed. by V. V. Tuchin (CRC, Boca Raton, FL, 2010), p. 591.

    Google Scholar 

  29. A. A. Angeluts, A. V. Balakin, M. G. Evdokimov, M. N. Esaulkov, M. M. Nazarov, I. A. Ozheredov, D. A. Sapozhnikov, P. M. Solyankin, O. P. Cherkasova, and A. P. Shkurinov, Quantum Electron. 44, 614 (2014).

    Article  ADS  Google Scholar 

  30. O. P. Cherkasova, M. M. Nazarov, A. A. Angeluts, and A. P. Shkurinov, Opt. Spectrosc. 120, 50 (2016).

    Article  ADS  Google Scholar 

  31. V. Raicu and Y. Feldman, Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications (Oxford Univ. Press, New York, 2015).

    Book  Google Scholar 

  32. M. M. Nazarov, O. P. Cherkasova, and A. P. Shkurinov, J. Infrared Millim. Terahertz Waves. 39, 840 (2018). https://doi.org/10.1007/s10762-018-0513-3

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.M. Nazarov and O.P. Cherkasova for valuable advices and help in interpreting the results of THz spectroscopy of the solutions.

Funding

This study was supported by the Russian Foundation for Basic Research in the part concerning the preparation of epitaxial structures and PCAs (project no. 18-32-20207 mol-a-ved) and spectroscopy of protein aqueous solutions (project nos. 17-00-00275 (17-00-00270) and 19-52-55004 Kitai_a) and by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences in the part concerning investigation of conversion of near-IR laser radiation of PCAs into THz radiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Klochkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klochkov, A.N., Klimov, E.A., Solyankin, P.M. et al. THz Radiation of Photoconductive Antennas based on {LT-GaAa/GaAa:Si} Superlattice Structures. Opt. Spectrosc. 128, 1010–1017 (2020). https://doi.org/10.1134/S0030400X20070097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20070097

Keywords:

Navigation