Skip to main content
Log in

Absorption of Powerful Light by Free Electrons in Crystals: Intraband Electron–Phonon Rabi Oscillations

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The absorption of high-power visible or near-IR laser radiation by free electrons is calculated using the modified resonance approximation. The probabilities Wexc of intraband transitions at which the electron energy changes by ℏ(ω ± ωl), where ω is the frequency of light and ωl is the frequency of longitudinal optical phonons involved in the process, are determined. It is shown that specific electron–phonon Rabi oscillations at a frequency of ΩR may take place, and that the light is absorbed only up to the moment of time at which the first maximum τ1 on the dependence Wexc(t) is reached, where t is the time elapsed from the beginning of the laser pulse. It is shown that, in the case of prebreakdown light intensities, processes of high orders in the field of the light wave affect substantially Wexc, τ1, and ΩR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. In paper [15], and then in textbooks [16, 17], erroneous formulas were given for the transition probability in the second order of perturbation theory.

REFERENCES

  1. A. A. Manenkov and A. M. Prokhorov, Sov. Phys. Usp. 29, 104 (1986). https://doi.org/10.1070/PU1986v029n01ABEH003117

    Article  ADS  Google Scholar 

  2. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, Opt. Eng. 28, 281039 (1989). https://doi.org/10.1117/12.7977089

    Article  ADS  Google Scholar 

  3. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076 (1998). https://doi.org/10.1103/PhysRevLett.80.4076

    Article  ADS  Google Scholar 

  4. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. B 53, 1749 (1996). https://doi.org/10.1103/PhysRevB.53.1749

    Article  ADS  Google Scholar 

  5. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, Phys. Rev. Lett. 91, 107601 (2003). https://doi.org/10.1103/PhysRevLett.91.107601

    Article  ADS  Google Scholar 

  6. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, Phys. Rev. B 69, 054102 (2004). https://doi.org/10.1103/PhysRevB.69.054102

    Article  ADS  Google Scholar 

  7. Y. P. Deng, X. H. Xie, H. Xiong, Y. X. Leng, C. F. Cheng, H. H. Lu, R. X. Li, and Z. Xu, Opt. Express 13, 3096 (2005). https://doi.org/10.1364/OPEX.13.003096

    Article  ADS  Google Scholar 

  8. B. Rethfeld, Phys. Rev. B 73, 035101 (2006). https://doi.org/10.1103/PhysRevB.73.035101

    Article  ADS  Google Scholar 

  9. H. Bachau, A. N. Belsky, I. B. Bogatyrev, J. Gaudin, G. Geoffroy, S. Guizard, P. Martin, Yu. V. Popov, A. N. Vasil’ev, and B. N. Yatsenko, Appl. Phys. A 98, 679 (2010). https://doi.org/10.1007/s00339-009-5465-y

    Article  ADS  Google Scholar 

  10. H. Y. Chen, Z. Z. Wan, and Y. L. Han, Appl. Mech. Mater. 142, 134 (2011). doi 10.4028/www.scientific.net/amm.142.134

  11. I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, Sci. Rep. 6, 39133 (2016). https://doi.org/10.1038/srep39133

    Article  ADS  Google Scholar 

  12. Zh. Lin, L. Ji, and M. Hong, Photon. Res. 8, 271 (2020). https://doi.org/10.1364/PRJ.379254

    Article  Google Scholar 

  13. E. Yu. Perlin, A. V. Fedorov, and M. B. Kashevnik, Sov. Phys. JETP 58, 787 (1983).

    Google Scholar 

  14. E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, J. Exp. Theor. Phys. 101, 357 (2005). https://doi.org/10.1134/1.2047802

    Article  ADS  Google Scholar 

  15. H. Y. Fan, W. Spitzer, and R. J. Collins, Phys. Rev. 101, 567 (1956). https://doi.org/10.1016/0038-1098(86)90279-6

    Article  ADS  Google Scholar 

  16. K. Seeger, Semiconductor Physics (Springer, Wien, New York, 1973), Chap. 11.

    Book  Google Scholar 

  17. A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Upper Saddle River, NJ, 1982).

    Google Scholar 

  18. B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1982).

    MATH  Google Scholar 

  19. M. O. Osipova and E. Yu. Perlin, J. Opt. Technol. 83, 648 (2016). https://doi.org/10.1364/JOT.83.000648

    Article  Google Scholar 

  20. M. O. Zhukova and E. Yu. Perlin, J. Opt. Technol. 84, 651 (2017). https://doi.org/10.1364/JOT.84.000651

    Article  Google Scholar 

  21. M. Yu. Leonov, A. O. Orlova, A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Yu. K. Gun’ko, J. Opt. Technol. 80, 648 (2013). https://doi.org/10.1364/JOT.80.000648

    Article  Google Scholar 

  22. H. P. M. Pellemans and P. C. M. Planken, Phys. Rev. B 57, R4222 (1998). https://doi.org/10.1103/PhysRevB.57.R4222

    Article  ADS  Google Scholar 

  23. H. Peelaers and C. G. van de Walle, Phys. Rev. B 100, 081202(R) (2019). https://doi.org/10.1103/PhysRevB.100.081202

  24. V. L. Malevich and E. M. Epshtein, Sov. J. Quant. Electron. 4, 1816 (1974). https://doi.org/10.1070/QE1974v004n06ABEH009345

    Article  Google Scholar 

  25. V. M. Fomin and E. P. Pokatilov, Phys. Status Solidi B 78, 831 (1976). https://doi.org/10.1002/pssb.2220780244

    Article  ADS  Google Scholar 

  26. V. M. Fomin and E. P. Pokatilov, Phys. Status Solidi B 119, 483 (1983). https://doi.org/10.1002/pssb.2221190206

    Article  ADS  Google Scholar 

  27. T. Apostolova, D. H. Huang, P. M. Alsing, J. McIver, and D. A. Cardimona, Phys. Rev. B 66, 075208 (2002). https://doi.org/10.1103/PhysRevB.66.0752

    Article  ADS  Google Scholar 

  28. D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, Phys. Rev. B 69, 075214 (2004). https://doi.org/10.1103/PhysRevB.69.075214

    Article  ADS  Google Scholar 

  29. D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, Phys. Rev. B 71, 045204 (2005). https://doi.org/10.1103/PhysRevB.71.045204

    Article  ADS  Google Scholar 

  30. E. Yu. Perlin, M. A. Bondarev, and M. O. Zhukova, Opt. Spectrosc. 123, 578 (2017); Opt. Spectrosc. 123, 583 (2017).https://doi.org/10.1134/S0030400X17100186https://doi.org/10.1134/S0030400X17100174

  31. S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955). https://doi.org/10.1103/PhysRev.100.703

    Article  ADS  Google Scholar 

  32. Y. Yacoby, Phys. Rev. B 1, 1666 (1970). https://doi.org/10.1103/PhysRevB.1.1666

    Article  ADS  Google Scholar 

  33. V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, Sov. Phys. JETP 30, 117 (1970).

    ADS  Google Scholar 

  34. E. Yu. Perlin and V. A. Kovarskii, Sov. Phys. Solid State 12, 2512 (1970).

    Google Scholar 

  35. N. Tzoar and J. I. Gersten, Phys. Rev. B 12, 1132 (1975). https://doi.org/10.1103/PhysRevB.12.1132

    Article  ADS  Google Scholar 

  36. E. Yu. Perlin, Sov. Phys. Solid State 15, 44 (1973).

    Google Scholar 

  37. Yu. I. Balkarei and E. M. Epshtein, Sov. Phys. Solid State 15, 641 (1973).

    Google Scholar 

  38. E. Yu. Perlin, Opt. Spectrosc. 41, 153 (1976).

    ADS  Google Scholar 

  39. D. Fröhlich, A. Nothe, and K. Reimann, Phys. Rev. Lett. 55, 1335 (1985). https://doi.org/10.1103/PhysRevLett.55.1335

    Article  ADS  Google Scholar 

  40. A. von Lehmen, D. S. Chemla, J. P. Heritage, and J. E. Zucker, Opt. Lett. 11, 609 (1986). https://doi.org/10.1364/OL.11.000609

    Article  ADS  Google Scholar 

  41. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morko, Phys. Rev. Lett. 56, 2748 (1986). https://doi.org/10.1103/PhysRevLett.56.2748

    Article  ADS  Google Scholar 

  42. W. Schäfer, K. H. Schuldt, and R. Binder, Phys. Status Solidi B 150, 407 (1988). https://doi.org/10.1002/pssb.2221500209

    Article  ADS  Google Scholar 

  43. W. H. Knox, D. S. Chemla, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, Phys. Rev. Lett. 62, 1189 (1989). https://doi.org/10.1103/PhysRevLett.62.1189

    Article  ADS  Google Scholar 

  44. D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, J. Lumin. 44, 233 (1989). https://doi.org/10.1016/0022-2313(89)90060-4

    Article  Google Scholar 

  45. E. Yu. Perlin and A. V. Fedorov, Opt. Spectrosc. 78, 400 (1995).

    ADS  Google Scholar 

  46. E. Yu. Perlin and A. V. Fedorov, Phys. Solid State 37, 792 (1995).

    ADS  Google Scholar 

  47. E. Yu. Perlin, J. Exp. Theor. Phys. 78, 98 (1994).

    ADS  Google Scholar 

  48. E. Yu. Perlin, Opt. Spectrosc. 83, 243 (1997). https://doi.org/10.1134/1.1953976

    Article  ADS  Google Scholar 

  49. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 92, 157401 (2004). https://doi.org/10.1103/PhysRevLett.92.157401

    Article  ADS  Google Scholar 

  50. E. Yu. Perlin and D. I. Stasel’ko, Opt. Spectrosc. 98, 844 (2005). https://doi.org/10.1134/1.1953976

    Article  ADS  Google Scholar 

  51. Y. Mizumoto, Y. Kayanuma, A. Srivastava, J. Kono, and A. H. Chin, Phys. Rev. B 74, 045216 (2006). https://doi.org/10.1103/PhysRevB.74.045216

    Article  ADS  Google Scholar 

  52. A. V. Ivanov and E. Yu. Perlin, Opt. Spectrosc. 106, 677 (2009); Opt. Spectrosc. 106, 685 (2009).https://doi.org/10.1134/S0030400X09050105https://doi.org/10.1134/S0030400X09050099

  53. M. A. Bondarev and E. Yu. Perlin, Opt. Spectrosc. 122, 561 (2017); Opt. Spectrosc. 122, 567 (2017). https://doi.org/10.1134/S0030400X17040075https://doi.org/10.1134/S0030400X17040063

  54. S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M. H. Jo, and H. Choi, Nat. Commun. 7, 13569 (2016). https://doi.org/10.1038/ncomms13569

    Article  ADS  Google Scholar 

  55. A. Ivanov, J. Opt. Soc. Am. B 35, 20 (2018). https://doi.org/10.1364/JOSAB.35.000020

    Article  ADS  Google Scholar 

  56. C. K. Yong, J. Horng, Y. Shen, H. Cai, A. Wang, C. S. Yang, C. K. Lin, S. Zhao, K. Watanabe, T. Taniguchi, S. Tongay, and F. Wang, Nat. Phys. 14, 1092 (2018). https://doi.org/10.1038/s41567-018-0216-7

    Article  Google Scholar 

  57. T. Lamountain, H. Bergeron, I. Balla, T. K. Stanev, M. C. Hersam, and N. P. Stern, Phys. Rev. B 97, 045307 (2018). https://doi.org/10.1103/PhysRevB.97.045307

    Article  ADS  Google Scholar 

  58. P. D. Cunningham, A. T. Hanbicki, T. L. Reinecke, K. M. McCreary, and B. T. Jonker, Nat. Commun. 10, 5539 (2019). https://doi.org/10.1038/s41467-019-13501-x

    Article  ADS  Google Scholar 

  59. U. Fano, Phys. Rev. 124, 1866 (1961). https://doi.org/10.1103/PhysRev.124.1866

    Article  ADS  Google Scholar 

  60. V. M. Akulin and N. V. Karlov, Intense Resonant Interactions in Quantum Electronics (Springer, Berlin, 1992; Nauka, 1987), Lect. 9.

  61. A. F. Linskens, I. Holleman, N. Dam, and J. Reuss, Phys. Rev. A 54, 4854 (1996). https://doi.org/10.1103/PhysRevA.54.4854

    Article  ADS  Google Scholar 

  62. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1987).

    MATH  Google Scholar 

  63. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramovitz and I. A. Stegun, Vol. 55 of Appl. Math. Ser. (Natl. Bureau of Standards, Washington, DC, 1964).

Download references

Funding

This work was performed under the state support from the leading universities of the Russian Federation (grant 08-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Perlin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perlin, E.Y., Ivanov, A.V. & Popov, A.A. Absorption of Powerful Light by Free Electrons in Crystals: Intraband Electron–Phonon Rabi Oscillations. Opt. Spectrosc. 128, 1983–1992 (2020). https://doi.org/10.1134/S0030400X20121005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20121005

Keywords:

Navigation