Skip to main content
Log in

Structure of strengthening particles of niobium carbide in Fe–Cr–Ni cast refractory alloys

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of optical and electron microscopies were used to study the structure of particles of niobium carbide in a cast refractory Fe–Cr–Ni–C alloy modified by Nb and Ti. Particles of niobium carbide in the structure of the cast alloy are predominantly multiphase polycrystalline clusters that are inhomogeneous in the chemical composition and crystal structure. The misorientation angle between individual crystals that compose the carbide particles is 30°–60°. The polycrystalline character of carbides is probably associated with significant thermal stresses that arise at the interphase boundaries in the structure of the alloy upon the primary cooling of the ingot. To explain the polymorphism of the cluster of niobium carbide, a further analysis of the structural and geometrical crystallography is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes. History of evolution,” Arch. Foundry Eng. 11 (SI 2), 47–52 (2011).

    Google Scholar 

  2. L. Bonaccorsi, E. Guglielmino, E. Pino, C. Servetto, and A. Sili, “Damage analysis in Fe–Cr–Ni centrifugally cast alloy tubes for reforming furnaces,” Eng. Fail. Anal. 36, 65–74 (2014).

    Article  Google Scholar 

  3. M. N. Ilman, M. Prihajatno, and Kusmono, “Analysis of material degradation and life assessment of 25Cr–38Ni–Mo–Ti wrought alloy steel (HPM) for cracking tubes in an ethylene plant,” Eng. Fail. Anal. 42, 100–108 (2014).

    Article  Google Scholar 

  4. H. M. Tawancy, A. Ul-Hamid, A. I. Mohammed, and N. M. Abbas, “Effect of materials selection and design on the performance of an engineering product—An example from petrochemical industry,” Mater. Des. 28, 686–703 (2007).

    Article  Google Scholar 

  5. A. A. Kaya, P. Krauklis, and D. J. Young, “Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack,” Mater. Charact. 49, 11–21 (2002).

    Article  Google Scholar 

  6. A. A. Kaya, “Microstructure of HK40 alloy after hightemperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations,” Mater. Charact. 49, 23–34 (2002).

    Article  Google Scholar 

  7. L. H. de Almeida, A. F. Ribeiro, and I. le May, “Microstructural characterization of modified 25Cr–35Ni centrifugally cast steel furnace tubes,” Mater. Charact. 49, 219–229 (2003).

    Article  Google Scholar 

  8. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, J. Cervenka, and D. May, “Structure and phase stability in cast modified-HP austenite after long-term ageing,” Scr. Mater. 49, 117–122 (2003).

    Article  Google Scholar 

  9. A. I. Rudskoi, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, M. D. Fuks, and S. N. Petrov, “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Met. Sci. Heat Treat. 55, 209–215 (2013).

    Article  Google Scholar 

  10. A. I. Rudskoi, G. P. Anastasiadi, S. Yu. Kondrat’ev, A. S. Oryshchenko, and M. D. Fuks, “Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C–26Cr–33Ni–2Si–2Nb superalloy,” Phys. Met. Metallogr. 115, 1–11 (2014).

    Article  Google Scholar 

  11. I. A. Sustaita-Torres, S. Haro-Rodrigues, M. P. Guerrero-Mata, M. de la Garza, E. Valdes, F. Deschaux-Beaume, and R. Colas, “Aging of cast 35Cr–45Ni heat resistant alloy,” Mater. Chem. Phys., 133, 1018–1023 (2012). http://dx.doi.org/ doi 10.1016/j.matchemphys. 2012.02.010

    Article  Google Scholar 

  12. L. S. Monobe and C. G. Schon, “Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the ‘as cast’ and aged states,” J. Mater. Res. Technol. 2, 195–201 (2013).

    Article  Google Scholar 

  13. W. Z. Wang, F. Z. Xuan, Z. D. Wang, and C. J. Liu, “Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy,” Mater. Design 32, 4010–4016 (2011).

    Article  Google Scholar 

  14. S. Borjali, S. R. Allahkaram, and H. Khosravi, “Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition,” Mater. Design 34, 65–73 (2012).

    Article  Google Scholar 

  15. A. I. Rudskoi, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, and M. D. Fuks, “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat. 56, 3–8 (2014).

    Article  Google Scholar 

  16. A. I. Rudskoi, S. Yu. Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko, and M. D. Fuks, “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Met. Sci. Heat Treat. 56, 124–130 (2014).

    Article  Google Scholar 

  17. A. I. Rudskoi, S. Yu. Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko, M. D. Fuks, S. N. Petrov, “Transformation of the structure of refractory alloy 0.45C–26Cr–33Ni–2Si–2Nb during a long-term high-temperature hold,” Met. Sci. Heat Treat. 55, 517–525 (2014).

    Article  Google Scholar 

  18. B. Piekarski, “Effect of Nb and Ti additions on microstructure and identification of precipitates in stabilized Ni–Cr cast austenitic steels,” Mater. Charact. 47, 181–186 (2001).

    Article  Google Scholar 

  19. T. L. Silveira and I. le May, “Niobium additions in HP heat-resistant cast stainless steels,” Mater. Charact. 29, 387–396 (1992).

    Article  Google Scholar 

  20. K. G. Buchanan and M. V. Kral, “Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes,” Metall. Mater. Trans. A 43, 1760–1769 (2012).

    Article  Google Scholar 

  21. K. G. Buchanan, M. V. Kral, and C. M. Bishop, “Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys,” Metall. Mater. Trans. A 45, 3373–3385 (2014).

    Article  Google Scholar 

  22. F. C. Nunes, L. H. De Almeida, J. Dille, and J.-L. Delplancke, and I. le May, “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels,” Mater. Charact. 58, 132–142 (2007).

    Article  Google Scholar 

  23. S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat. 57, 402–409 (2015).

    Article  Google Scholar 

  24. Y. Jingbo, G. Yimin, Y. Fang, Y. Caiying, Y. Zhaozhong, Y. Dawei, and M. Shengqiang, “Effect of tungsten on the microstructure evolution and mechanical properties of yttrium modified HP40Nb alloy,” Mater. Sci. Eng., A 529, 361–369 (2011).

    Article  Google Scholar 

  25. T. Sourmail, “Precipitates in creep resistant austenitic stainless steels,” Mater. Sci. Technol. 17, 1–14 (2001).

    Article  Google Scholar 

  26. V. V. Rybin, A. S. Rubtsov, and E. V. Nesterova, “Method of single reflections and its application for electron-microscopical analysis of dispersed phases,” Zavod. Lab. no. 5, 16–21 (1982).

    Google Scholar 

  27. I. G. Rodionova, A. I. Zaitsev, N. G. Shaposhnikov, I. N. Chirkina, A. M. Pokrovskii, A. A. Nemtinov, P. A. Mishnev, and V. V. Kuznetsov, “Effect of chemical content and production parameters on formation of nanostructural component and complex of highstrength low-doped structural steel properties,” Metallurgiya, No. 6, 33–39 (2010).

    Google Scholar 

  28. Z. Mao, W. Chen, D. N. Seidman, and C. Wolverton, “First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys,” Acta Mater. 59, 3012–3023 (2011).

    Article  Google Scholar 

  29. C. Monachon, M. E. Krug, D. N. Seidman, and D. C. Dunand, “Chemistry and structure of core/double-shell nanoscale precipitates in Al–6.5Li–0.07Sc–0.02Yb (At. %),” Acta Mater. 59, 3398–3409 (2011).

    Article  Google Scholar 

  30. A. Formenti, A. Eliasson, A. Mitchell, and H. Fredriksson, “Solidification sequence and carbide precipitation in Ni-base superalloys In718, In625 and In939,” High Temp. Mater. Processes 24, 239–258 (2005).

    Google Scholar 

  31. F. C. Nunes, J. Dille, J. -L. Delplancke, and L. H. de Almeida, “Yttrium addition to heat-resistant cast stainless steel,” Scr. Mater. 54, 1553–1556 (2006).

    Article  Google Scholar 

  32. T. J. Konno, E. Miura, A. Tanaka, and Sh. Hanada, “A TEM study on the semicoherent precipitates in a Nb–19% Mo alloy,” Acta Mater. 53, 1783–1789 (2005).

    Article  Google Scholar 

  33. J. Billingham, P. S. Bell, and M. H. Lewis, “Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaCl structure. I. Electron diffraction studies of short-range ordered compounds,” Acta Crystallogr., Sect. A: Found. Crystallogr. 28, 602–606 (1972).

    Article  Google Scholar 

  34. J. P. Landesman, A. N. Christensen, C. H. De Novion, N. Lorenzelli, and P. Convert, “Order–disorder transition and structure of the ordered vacancy compound Nb6C5: Powder neutron diffraction studies,” J. Phys. C: Solid State Phys. 18, 809–824 (1985).

    Article  Google Scholar 

  35. R. Kesri and S. Hamar-Thibault, “Structures ordonnees a longue distance dans les carbures MC dans les fonts,” Acta. Metall. 36, 149–166 (1988).

    Article  Google Scholar 

  36. A. I. Gusev and A. A. Rempel, “Order–disorder phase transition channel in niobium carbide,” Phys. Stat. Sol. A: Appl. Mater. Sci. 93, 71–80 (1986).

    Article  Google Scholar 

  37. Steel Castings Handbook. Supplement 9. High Alloy Data Sheets. Heat Series. (Steel Founder’s Society of America, Ohio, 2004).

  38. R. A. P. Ibanez, G. D. de Almeida Soares, and L. H. de Almeida, and I. Le May, “Effects of Si content on the microstructure of modified-HP austenitic steels,” Mater. Charact. 30, 243–249 (1993).

    Article  Google Scholar 

  39. F. G. Caballero, P. Imizcoz, V. Lopez, L. F. Alvarez, and C. de Andres, “Use of titanium and zirconium in centrifugally cast heat resistant steel,” Mater. Sci. Technol. 23, 528–534 (2007).

    Article  Google Scholar 

  40. Wm. F. Brizes, L. H. Cadoff, and J. M. Tobin, “Carbon diffusion in the carbides of niobium,” J. Nucl. Mater. 20, 57–67 (1966).

    Article  Google Scholar 

  41. A. Talis and V. Kraposhin, “Finite noncrystallographic groups, 11-vertex triangulated clusters, and polymorphic transformations in metals,” Acta Crystall. A 70, 616–625 (2014).

    Article  Google Scholar 

  42. S. Yu. Kondrat’ev, V. S. Kraposhin, G. P. Anastasiadi, and A. L. Talis, “Experimental observation and crystallographic description of M7C3 carbide transformation in Fe–Cr–Ni–C HP type alloy,” Acta Mater. 100, 275–281 (2015).

    Article  Google Scholar 

  43. V. S. Kraposhin, A. L. Talis, E. D. Demina, and A. I. Zaitsev, “Crystal geometry mechanism of intergrowth of spinel and manganese sulfide into a complex nonmetallic inclusion,” Met. Sci. Heat Treat. 57, 371–378 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kondrat’ev.

Additional information

Original Russian Text © S.Yu. Kondrat’ev, E.V. Svyatisheva, G.P. Anastasiadi, S.N. Petrov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 7, pp. 693–704.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.Y., Svyatisheva, E.V., Anastasiadi, G.P. et al. Structure of strengthening particles of niobium carbide in Fe–Cr–Ni cast refractory alloys. Phys. Metals Metallogr. 118, 659–670 (2017). https://doi.org/10.1134/S0031918X17070055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17070055

Keywords

Navigation