Skip to main content
Log in

Effect of Ultra-Fast Heating Before Decarburizing Annealing on Structural Transformations and Properties of Commercial Fe–3% Si Alloy

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of ultra-fast (induction) heating of a commercial Fe–3% Si alloy strip (grain oriented electrical steel) at a rate of ~100°С/s on the magnetic properties of finished product is studied in this work. This heating is accomplished after cold rolling followed by recrystallizing decarburizing annealing. It is shown that, in parallel with a reference sample, the ultra-fast heating leads (1) after recrystallizing decarburizing annealing to an increase in the average ferrite grain and, within the near-surface layer, to an increase in the edge component of the {110}〈001〉 texture and decrease in the fraction of {111}〈112〉 component; (2) after the second cold rolling at the final stages of annealing before secondary recrystallization, to an increase in the sharpness of the {110}〈001〉 component; and (3) in the finished product, to a decrease in the average macrograin size by 1.5 times (from ~9 to ~6 mm) and a decrease in the average angle of deviation of easy magnetization axes 〈001〉 from the rolling direction from ~7° to ~6°. The magnetic properties of the studied material exceed those of the comparison metal in all cases. The effect of ultra-fast heating on the texture transformations in the alloy and the formation of the final properties are explained by different nucleation places of grains of different orientations upon primary recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. F. Tiunov, “On the influence of the nonuniformity of remagnetization of Fe–3% Si anisotropic electrical steel on magnetic loss in rotating magnetic fields,” Phys. Met. Metallogr. 119, no. 9, 825–830 (2018).

    Article  CAS  Google Scholar 

  2. V. V. Gubernatorov, Yu. N. Dragoshanskii, and T. S. Sycheva, “Atomic ordering of soft magnetic Fe‒Si alloys and effect of thermomagnetic treatment,” Phys. Met. Metallogr. 120, no. 8, 723–728 (2019).

    Article  Google Scholar 

  3. I. V. Gervas’eva, V. A. Milyutin, E. Binon, E. G. Volkova, and D. A. Shishkin, “Effect of heat treatment in an ultra-high magnetic field on the formation of structure and texture in Fe–Si alloys,” Phys. Met. Metallogr. 116, no. 2, 162–169 (2015).

    Article  Google Scholar 

  4. Q. Meng, J. Li, and H. Zheng, “High-efficiency fast-heating annealing of a cold-rolled dual-phase steel,” Mater. Des. 58, 194–197 (2014).

    Article  CAS  Google Scholar 

  5. F. M. Cerda Castro, L. A. I. Kestens, A. Monsalve, and R. H. Petrov, “The effect of ultrafast heating in cold-rolled low carbon steel: recrystallization and texture evolution,” Metals 6, 288–302 (2016).

    Article  Google Scholar 

  6. S. Papaefthymiou, V. Karamitros, and M. Bouzouni, “Ultrafast heating and initial microstructure effect on phase transformation evolution of a CrMo steel,” Metals 9, 72–86 (2019).

    Article  CAS  Google Scholar 

  7. K. Kosuge, M. Itoh, S. Ueno, H. Hukazawa, and T. Yoshimura, U.S. Patent No. 5833768 (10 November 1998).

  8. Y. Shingaki, T. Takamiya, T. Okubo, and K. Senda, U.S. Patent No. 2015/0007908 (08 January 2015).

  9. M. L. Lobanov, A. A. Redikul’tsev, and G. M. Rusakov, “Electrotechnical anisotropic steel. Part 1. History of development,” Met. Sci. Heat Treat. 53, 326–332 (2011).

    Article  CAS  Google Scholar 

  10. M. L. Lobanov, A. A. Redikul’tsev, and G. M. Rusakov, “Electrotechnical anisotropic steels. Part II. State-of-the-art,” Met. Sci. Heat Treat. 53, 355–359 (2011).

    Article  CAS  Google Scholar 

  11. S. V. Akulov, A. A. Redikul’tsev, L. S. Karenina, B. V. Parshakov, and N. V. Mikhailov N.V, RU Patent 2637848 (07 December 2017).

  12. M. L. Lobanov, A. I. Gomzikov, A. I. Pyatygin, and S. V. Akulov, “Decarburizing annealing of technical alloy Fe–3% Si,” Met. Sci. Heat Treat. 47, 478–483 (2005).

    Article  CAS  Google Scholar 

  13. M. L. Lobanov and A. S. Yurovskikh, “Thermochemical treatment of anisotropic electrical steel,” Met. Sci. Heat Treat. 58, 667–673 (2016).

    Article  Google Scholar 

  14. Y. Hayakawa, “Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel,” Sci. Technol. Adv. Mater. 18, no. 1, 480–497 (2017).

    Article  CAS  Google Scholar 

  15. M. L. Lobanov, A. S. Yurovskikh, N. I. Kardonina, and G. M. Rusakov, Methods of Study of Textures in Materials: Tutorial (Izd-vo Ural. Un-ta, Yekaterinburg, 2014) [in Russian].

    Google Scholar 

  16. J.-K. Kim, J. S. Woo, and S. K. Chang, “Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe–3% Si alloy,” J. Magn. Magn. Mater. 215–216, 162–164 (2000).

    Article  Google Scholar 

  17. M. A. Da Cunha and S. C. Paolinelli, “Effect of the annealing temperature on the structure and magnetic properties of 3% Si non-oriented steel,” J. Magn. Magn. Mater. 254–255, 379–381 (2003).

    Article  Google Scholar 

  18. N.-J. Park, H.-D. Joo, and J.-T. Park, “Evolution of goss orientation during thermal heating with different heating rate for primary recrystallization in grain-oriented electrical steel,” ISIJ Int. 53, no. 1, 125–130 (2013).

    Article  CAS  Google Scholar 

  19. P. Rodriguez-Calvillo, E. Leunis, T. Van De Putte, S. Jacobs, O. Zacek, and W. Saikaly, “Influence of initial heating during final high temperature annealing on the offset of primary and secondary recrystallization in Cu-bearing grain oriented electrical steels,” AIP Adv. 8, 047605-1–047605-7 (2018).

    Article  Google Scholar 

  20. H. Homma and B. Hutchinson, “The production mechanism of extensively sharp Goss orientation in HI–B material,” J. Magn. Magn. Mater. 254–255, 331–333 (2003).

    Article  Google Scholar 

  21. K. Ushioda and W. B. Hutchinson, “Role of shear bands in annealing texture formation in 3% Si–Fe single crystals,” ISIJ Int. 29, 862–867 (1989).

    Article  CAS  Google Scholar 

  22. D. Dorner, S. Zaefferer, and D. Raabe, “Retention of the Goss orientation between microbands during cold rolling of an Fe3% Si single crystal,” Acta Mater. 55, no. 7, 2519–2530 (2007).

    Article  CAS  Google Scholar 

  23. G. M. Rusakov, M. L. Lobanov, A. A. Redikultsev, and I. V. Kagan, “Model of {110}[001] texture formation in shear bands during cold rolling of Fe–3 Pct Si alloy,” Metall. Mater. Trans. A 40, no. 5, 1023–1025 (2009).

    Article  Google Scholar 

  24. J. Liu, Y. Sha, K. Hu, F. Zhang, and L. Zuo, “Formation of cube and goss texture after primary recrystallization in electrical steels,” Metall. Mater. Trans A 45, 134–138 (2014).

    Article  Google Scholar 

  25. V. Yu. Novikov, Secondary Recrystallization (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  26. B. Hutchinson, D. Lindell, M. Nave, and A. Rollett, “Development of boundary misorientations during grain growth in silicon steels,” Mater. Sci. Forum 753, 311–316 (2013).

    Article  Google Scholar 

  27. G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, and A. S. Belyaevskikh, “Special misorientations and textural heredity in the commercial alloy Fe–3% Si,” Phys. Met. Metallogr. 115, no. 8, 775–785 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Redikultsev.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redikultsev, A.A., Akulov, S.V., Karenina, L.S. et al. Effect of Ultra-Fast Heating Before Decarburizing Annealing on Structural Transformations and Properties of Commercial Fe–3% Si Alloy. Phys. Metals Metallogr. 121, 1008–1014 (2020). https://doi.org/10.1134/S0031918X20100099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20100099

Keywords:

Navigation