Skip to main content
Log in

Thermodynamics of Solutions and Azeotropy in ZincCalcium Melts

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The partial and integral thermodynamic functions of mixing and vaporization are calculated for Zn–Са alloys from the vapor pressures determined by the boiling point method. Alloy formation over the whole range of concentrations proceeds with heat release, with attendant considerable ordering in the system relative to an ideal solution up to ~70 at % Са in the alloy and with a minor increase in disorder when calcium concentration exceeds this value. The curves of integral functions of vaporization feature extremes at ~85 at % Ca: a minimum entropy of 85.48 J/(mol K) and a maximum enthalpy of 156.44 kJ/mol. The vapor pressures of alloy components were used to supplement the Zn–Са phase diagram with the liquid and vapor coexistence fields at the atmospheric pressure (101.33 kPa) and in a vacuum (1.33 and 0.7 kPa). The existence of a liquid containing 93.2 ± 6.7 at % Ca that boils unseparably at 1494°С was discovered. As the pressure (boiling temperature) decreases, the azeotrope composition shifts (in accordance with the Vrevsky law) toward the zinc edge of the phase diagram, where zinc has a lower enthalpy of vaporization compared to that of calcium (118.6 kJ/mol against 153.7 kJ/mol). The positions of boundaries of the vapor–liquid equilibrium fields indicate the impracticability of distillation separation of the Zn–Са system to the constituent metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. E. R. Schulze and U. Werncke, Monats. Deutsch. Akad. Wissensch. 5, 68 (1963).

    CAS  Google Scholar 

  2. P. Chiotti and R. J. Hecht, Trans. Met. Soc. 239, 536 (1967).

    CAS  Google Scholar 

  3. B. P. Burylev, Thermodynamic and Thermochemical Constants (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  4. A. E. Vol and I. K. Kagan, Structure and Properties of Binary Inorganic Systems (Nauka, Moscow, 1979), Vol. 4 [in Russian].

    Google Scholar 

  5. Phase Diagrams of Binary Metal Systems, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].

    Google Scholar 

  6. R. Hultgren, P. D. Desai, and D. T. Hawkins, et al. Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, New York, 1973).

    Google Scholar 

  7. V. I. Zhuravlev, A. V. Volkovich, and G. N. Zhirkov, Proceedings of the 7th Workshop on the Physical and Electrochemistry of Rare and Nonferrous Metals (Apa-tity, 1992), p. 38.

  8. Y.-N. Dai and B. Yang, Vacuum Metallurgy of Non-Ferrous Metals (Metallurgical Ind. Press, Beijing, 2000), Vol. 3.

    Google Scholar 

  9. C. O. Brubaker and Z.-K. Liu, Calphad 25, 381 (2001). https://doi.org/10.1016/S0364-5916(01)00057-8

    Article  CAS  Google Scholar 

  10. Y. Zhong, K. Ozturk, and Z.-K. Liu, J. Phase. Eq. 24, 340 (2003).

  11. P. J. Spencer, A. D. Pelton, Y.-B. Kang, et al., Calphad 32, 423 (2008). https://doi.org/j.calphad.200803.01

    Article  CAS  Google Scholar 

  12. M. V. Shtenberg, V. A. Bychinskii, O. I. Koroleva, et al., Zh. Neorg. Khim. 62, 1470 (2017). https://doi.org/10.7868/S0044457X17110071

    Article  Google Scholar 

  13. I. Yu. Shilov and A. K. Lyashchenko, Zh. Neorg. Khim. 64, 1006 (2019). https://doi.org/10.1134/S0044457X19090216

    Article  Google Scholar 

  14. V. G. Muradov, Uch. Zap. Ul’yanovsk. Gos. Pedag. Inst. 18 (5), 64 (1964).

    CAS  Google Scholar 

  15. E. Schürmann and R. Schmid, Arch. Eisenhuttenwes 46, 773 (1975).

    Google Scholar 

  16. V. M. Glazov, V. B. Lazarev, and V. V. Zharov, Phase Diagrams of Simple Substances (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  17. V. P. Malyshev, A. M. Turdukozhaeva, E. A. Ospanov, and B. Sarkenov, Evaporation and Boiling of Simple Substances (Nauchnyi Mir, Moscow, 2010) [in Russian].

    Google Scholar 

  18. V. N. Volodin, V. E. Khrapunov, B. K. Kenzhaliev, et al., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metal., No. 3, 22 (2005).

  19. V. N. Volodin and Yu. Zh. Tuleushev, Zh. Fiz. Khim. 94, 975 (2020)

  20. V. N. Volodin, Yu. Zh. Tuleushev, N. M. Burabaeva, and A. S. Kerimshe, Zh. Neorg. Khim. 65, 2020. https://doi.org/10.31857/S0044457X20050256

  21. Y. K. Rao, Metall. Trans. A 14, 308 (1983).

    Article  Google Scholar 

  22. A. G. Morachevskii, Thermodynamics of Molten Metal and Salt Systems (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  23. J. B. Clark and P. W. Richter, Proceedings of the 7th International AIRAPT Conference, Le Creusot, 1979 (Oxford, 1980), Vol. 1, p. 363.

  24. V. N. Volodin, V. E. Khrapunov, and I. A. Marki, Zh. Fiz. Khim. 85, 1392 (2011).

    Google Scholar 

  25. M. S. Vrevsky, Works on the Theory of Solutions (Izd–vo Akad. Nauk SSSR, Moscow/Leningrad, 1953) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Zh. Tuleushev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, V.N., Tuleushev, Y.Z., Burabaeva, N.M. et al. Thermodynamics of Solutions and Azeotropy in ZincCalcium Melts. Russ. J. Inorg. Chem. 65, 1069–1076 (2020). https://doi.org/10.1134/S0036023620070232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620070232

Keywords:

Navigation