Skip to main content
Log in

Sorption of Fluoride Ions onto Cellulose and Aluminum Oxide Composites

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Sorption properties of a composite based on microcrystalline cellulose and nanosized aluminum oxide film immobilized on its surface in removal of fluoride ions from water are studied. The optimal thickness of the sorbent layer at which the maximum sorption of fluoride ions occurs is 50 nm. The effects of various parameters, such as the solution pH and sorption time, on sorption are studied. The kinetic parameters of sorption and the rate-controlling step of the process are determined. The ion exchange mechanism of fluoride ion sorption onto the prepared sorbent is confirmed by IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Inaniyan and T. Raychoudhury, Int. J. Environ. Sci. Technol. 16, 7545 (2019). https://doi.org/10.1007/s13762-018-2097-9

    Article  CAS  Google Scholar 

  2. C. Ren, Z. Yu, B. L. Phillips, et al., J. Colloid Interface Sci. 557, 357 (2019). https://doi.org/10.1016/j.jcis.2019.09.039

    Article  CAS  PubMed  Google Scholar 

  3. P. Mondal and M. K. Purkait, Chemosp 235, 391 (2019). https://doi.org/http:1016/j.chemosphere.2019.06.189

  4. J. Liu, P. Zhao, Xu. Yue, and X. Ji, Bioinorg. Chem. Appl. 2019, 1 (2019). https://doi.org/10.1155/2019/5840205

    Article  CAS  Google Scholar 

  5. L. Wei, F. Zietzschmann, L. C. Rietveld, and D. Halem, Chemosphere 243, 125 307 (2020). https://doi.org/10.1016/j.chemosphere.2019.125307

    Article  CAS  Google Scholar 

  6. S. Raghav, M. Nair, and D. Kumar, Appl. Surf. Sci. 498, 143 785 (2019). https://doi.org/10.1016/j.apsusc.2019.143785

    Article  CAS  Google Scholar 

  7. R. Kumar and S. Mondal, Lecture Notes Civil Eng. 57, 417 (2020). https://doi.org/10.1007/978-981-15-0990-2_34

    Article  Google Scholar 

  8. C. Yang, L. Guan, J. Wang, et al., Environ. Technol. 40, 3668 (2019). https://doi.org/10.1080/09593330.2018.1484523

    Article  CAS  PubMed  Google Scholar 

  9. N. B. Singh, Y. K. Srivastava, S. P. Shukla, and J. B. Markandeya, J. Inst. Eng.(India): A 100, 667 (2019). https://doi.org/10.1007/s40030-019-00387-7

  10. P. Miretzky and A. F. Cirelli, J. Fluorine Chem. 132, 231 (2011). https://doi.org/10.1016/j.jfluchem.2011.02.001

  11. S. Meenakshi and N. Viswanathan, J. Colloid Interface Sci. 308, 438 (2007). https://doi.org/10.1016/j.jcis.2006.12.032

  12. L. A. Richards, B. S. Richards, and A. I. Schafer, J. Membr. Sci. 369, 188 (2011). https://doi.org/10.1016/j.memsci.2010.11.069

    Article  CAS  Google Scholar 

  13. I. Labastida, M. A. Armienta, M. Beltran, et al., J. Geochem. Explor. 183, 206 (2017). https://doi.org/10.1016/j.gexplo.2016.12.001

    Article  CAS  Google Scholar 

  14. S. Lahnid, M. Tahaikt, K. Elaroui, et al., Desalination 230, 213 (2008). https://doi.org/10.1016/j.desal.2007.11.027

    Article  CAS  Google Scholar 

  15. A. Nagaraj, K. K. Sadasivuni, and M. Rajan, Carbohydr. Res. 176, 402 (2017). https://doi.org/10.1016/j.carbpol.2017.08.089

    Article  CAS  Google Scholar 

  16. H. Farrah, J. Slavek, and W. F. Pickering, J. Soil Res. 25, 55 (1987). https://doi.org/10.1071/SR9870055

    Article  CAS  Google Scholar 

  17. Y. Ku and H.-M. Chiou, Water Air Soil Pollut. 133, 349 (2002). https://doi.org/10.1023/A:1012929900113

    Article  CAS  Google Scholar 

  18. J. L. R. Bahena, A. R. Cabrera, A. L. Valdivieso, and R. H. Urbina, Sep. Sci. Technol. 37, 1973 (2002). https://doi.org/10.1081/SS-120003055

    Article  CAS  Google Scholar 

  19. A. L. Valdivieso, BahenaJ. L. Reyes, S. Song, and UrbinaR. Herrera, J. Colloid Interface Sci. 298, 1 (2006). https://doi.org/10.1016/j.jcis.2005.11.060

    Article  CAS  Google Scholar 

  20. S. A. Wasay, S. Tokunaga, and S. W. Park, Sep. Sci. Technol. 31, 1501 (1996). https://doi.org/10.1080/01496399608001409

    Article  CAS  Google Scholar 

  21. S. M. Maliyekkal, A. K. Sharma, and L. Philip, Water Res. 40, 3497 (2006). https://doi.org/10.1016/j.watres.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  22. S. S. Tripathy, J.-L. Bersillon, and K. Gopal, Sep. Purif. Technol. 50, 310 (2006). https://doi.org/10.1016/j.seppur.2005.11.036

    Article  CAS  Google Scholar 

  23. A. Bansiwal, P. Pillewan, R. B. Biniwale, and S. S. Rayalu, Microporous Mesoporous Mater. 129, 54 (2010). https://doi.org/10.1016/j.micromeso.2009.08.032

    Article  CAS  Google Scholar 

  24. S. M. Maliyekkal, S. Shukla, L. Philip, and I. M. Nambi, Chem. Eng. J. 140, 183 (2008). https://doi.org/10.1016/j.cej.2007.09.049

    Article  CAS  Google Scholar 

  25. T. Wajima, Y. Umeta, S. Narita, and K. Sugawara, Desalination 249, 323 (2009). https://doi.org/10.1016/j.desal.2009.06.038

    Article  CAS  Google Scholar 

  26. M. Karthikeyan and K. P. Elango, J. Environ. Sci. (China) 21, 1513 (2009). https://doi.org/10.1016/S1001-0742(08)62448-1

    Article  CAS  Google Scholar 

  27. S. Deng, H. Liu, W. Zhou, et al., J. Hazard. Mater. 186, 1016 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.024

    Article  CAS  Google Scholar 

  28. Y. Ku and H.-M. Chiou, Water Air Soil Pollut. 133, 349 (2002). https://doi.org/10.1023/A:1012929900113

    Article  CAS  Google Scholar 

  29. C. Sundaram, N. Viswanathan, and S. Meenakshi, J. Hazard. Mater. 163, 618 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  30. K. N. Nishchev, M. I. Novopoltsev, N. A. Ruzavina, et al., Proceedings of the 14th International Baltic Conference on Atomic Layer Deposition, BALD 2016, p. 24. https://doi.org/10.1109/BALD.2016.7886524

  31. V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, J. Appl. Phys., 021 301 (2013). https://doi.org/10.1063/1.4757907

  32. A. Toyoda and T. Taira, IEEE Trans. Semicond. Manuf. 13, 1109 (2000). https://doi.org/10.1109/66.857940

    Article  Google Scholar 

  33. R. Alosmanov, Sorb. Khromatograf. Prots. 10, 427 (2010).

    Google Scholar 

  34. H. N. Tran, S.-J. You, A. Hosseini-Bandegharaei, et al., Chemosphere, 10 (2017). https://doi.org/10.1016/j.watres.2017.04.014

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0729-2020-0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Balandina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Terpilovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, A.V., Balandina, A.V., Chugunov, D.B. et al. Sorption of Fluoride Ions onto Cellulose and Aluminum Oxide Composites. Russ. J. Inorg. Chem. 65, 1770–1775 (2020). https://doi.org/10.1134/S0036023620110030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620110030

Navigation