Skip to main content
Log in

Quantum Chemical Study of Interaction between Titanocene Dichloride Anticancer Drug and Al12N12 Nano-Cluster

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, we have investigated the interaction between Al12N12 nano-cluster and titanocene dichloride anticancer drug complex using B3P86 functional. Two interactions modes between Al12N12 nano-cluster and titanocene dichloride complex (TiCl2Cp2, Cp = η5-(C5H5)2) have been studied. The bonding interaction between the Al12N12 nano-cluster and anticancer drug has been examined through energy decomposition analysis (EDA). In addition, Shubin Liu’s energy decomposition analysis (EDA-SBL) has been used to study the source of energy different between various isomers of Al12N12···cp2TiCl2 complex. Charge transfer between fragments have been illustrated with electrophilicity-based charge transfer (ECT). The related molecular properties to the biological activity of these drug precursor molecules have been studied (octanol–water partition coefficient (log P), molecular volume (Vm)). The quantum theory of atoms in molecules (QTAIM) analysis has been applied to assess the Al–Cl bonds within the Al12N12···cp2TiCl2 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. Koepf-Maier and H. Koepf, Chem. Rev. 87, 1137 (1987).https://doi.org/10.1021/cr00081a012

    Article  CAS  Google Scholar 

  2. P. Köpf-Maier and H. Köpf, Bioinorg. Chem. Struct. Bond. 70, 103 (1988).https://doi.org/10.1007/3-540-50130-4_3

    Article  Google Scholar 

  3. M. J. Clarke, F. Zhu, and D. R. Frasca, Chem. Rev. 99, 2511 (1999).https://doi.org/10.1021/cr9804238

    Article  CAS  PubMed  Google Scholar 

  4. E. V. Tshuva and D. Peri, Coord. Chem. Rev. 253, 2098 (2009).https://doi.org/10.1016/j.ccr.2008.11.015

    Article  CAS  Google Scholar 

  5. S. Gómez-Ruiz, G. N. Kaluderovíc, D. Polo-Cerón, et al., J. T. Sabo, Inorg. Chem. Commun. 10, 748 (2007).https://doi.org/10.1016/j.inoche.2007.03.016

    Article  CAS  Google Scholar 

  6. S. Gómez-Ruiz, G. N. Kaluderovíc, D. Polo-Cerón, et al., J. Inorg. Biochem. 102, 1558 (2008).https://doi.org/10.1016/j.jinorgbio.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  7. S. Barroso, A. M. Coelho, S. Gómez-Ruiz, et al., Dalton Trans. 43, 17 422 (2014).https://doi.org/10.1039/C4DT00975D

    Article  CAS  Google Scholar 

  8. M. L. McLaughlin, J. M. Cronan, T. R. Schaller, and R. D. Snelling, J. Am. Chem. Soc. 112, 8949 (1990).https://doi.org/10.1021/ja00180a046

    Article  CAS  Google Scholar 

  9. M. M. Harding, G. J. Harden, and L. D. Field, FEBS Lett. 322, 291 (1993).https://doi.org/10.1016/0014-5793(93)81588-q

    Article  CAS  PubMed  Google Scholar 

  10. J. H. Murray and M. M. Harding, J. Med. Chem. 37, 1936 (1994).https://doi.org/10.1021/jm00039a005

    Article  CAS  PubMed  Google Scholar 

  11. X. Chen and L. Zhou, Journal of Molecular Structure: THEOCHEM 940, 45 (2010).https://doi.org/10.1016/j.theochem.2009.10.007

    Article  CAS  Google Scholar 

  12. O. R. Allen, L. Croll, A. L. Gott, et al., Organometals 23, 288 (2004).https://doi.org/10.1021/om030403i

    Article  CAS  Google Scholar 

  13. J. R. Boyles, M. C. Baird, B. G. Campling, N. Jain, J. Inorg. Biochem. 84, 159 (2011).https://doi.org/10.1016/S0162-0134(00)00203-8

    Article  Google Scholar 

  14. P. W. Causey and M. C. Baird, Organometals 4486 (2004).https://doi.org/10.1021/om049679w

  15. R. Teuber and G. L. G. M. Tacke, J. Organomet. Chem. 545–546, 105 (1997).https://doi.org/10.1016/S0022-328X(97)00267-2

    Article  Google Scholar 

  16. S. Fox, J. P. Dunne, D. Dronskowski, et al., Eur. J. Inorg. Chem. 3039 (2002).https://doi.org/10.1002/1099-0682(200211)2002:11<30-39::AID-EJIC3039>3.0.CO;2-0

  17. F.-J. K. Rehmann, L. P. Cuffe, O. Mendoza, et al., Appl. Organomet. Chem. 19, 293 (2005).https://doi.org/10.1002/aoc.864

    Article  CAS  Google Scholar 

  18. K. M. Kane, P. J. Shapiro, V. A. R. Cubbon, and A. L. Rheingold, Organometals 16, 4567 (1997).https://doi.org/10.1021/om9704399

    Article  CAS  Google Scholar 

  19. M. Tacke, L. T. Allen, L. Cuffe, et al., J. Organomet. Chem. 689, 2242 (2004).https://doi.org/10.1016/j.jorganchem.2004.04.015

    Article  CAS  Google Scholar 

  20. D. L. Strout, J. Phys. Chem. A 104, 3364 (2000).https://doi.org/10.1021/jp994129a

    Article  CAS  Google Scholar 

  21. R. Wang, D. Zhang, and C. Liu, Chem. Phys. Lett. 411, 333 (2005).https://doi.org/10.1016/j.cplett.2005.06.055

    Article  CAS  Google Scholar 

  22. B. Bertolus, F. Finocchi, and P. Millie, J. Chem. Phys. 120, 4333 (2004).https://doi.org/10.1063/1.1636717

    Article  CAS  PubMed  Google Scholar 

  23. C.-C. Fu, M. Weissmann, M. Machado, and P. Ordejón, Phys. Rev. B 63, 85 411 (2001).https://doi.org/10.1103/PhysRevB.63.085411

    Article  CAS  Google Scholar 

  24. M. Bilge, J. Struc. Chem. 59, 1271 (2018).https://doi.org/10.1134/S0022476618060045

    Article  CAS  Google Scholar 

  25. A. K. Kandalam, M. A. Blanco, and R. Pandey, J. Phys. Chem. B 105, 6080 (2001).https://doi.org/10.1021/jp004404p

    Article  CAS  Google Scholar 

  26. E. S. E. Tahmasebi and Z. Biglari, Appl. Surf. Sci. 363, 197 (2016).https://doi.org/10.1016/j.apsusc.2015.12.001

    Article  CAS  Google Scholar 

  27. Q. W. F. Zhang, X. Wang, N. Liu, et al., J. Phys. Chem. C 113, 4053 (2009).https://doi.org/10.1021/jp811484r

    Article  CAS  Google Scholar 

  28. H.-S. Wu, F.-Q. Zhang, X.-H. Xu, et al., J. Phys. Chem. A 107, 204 (2003).https://doi.org/10.1021/jp027300i

    Article  CAS  Google Scholar 

  29. H. Wu, X. Fan, and J.-L. Kuo, Int. J. Hydrogen En. 37, 14 336 (2012).https://doi.org/10.1016/j.ijhydene.2012.07.081

    Article  CAS  Google Scholar 

  30. H. Ghanbari, B. G. Cousins, and A. M. Seifalian, Macromol. Rapid Commun. 32, 1032 (2011).https://doi.org/10.1002/marc.201100126

    Article  CAS  PubMed  Google Scholar 

  31. Z. Kazemi, R. Ghiasi, and S. Jamehbozorgi, J. Struct. Chem. 59, (2018).https://doi.org/10.1134/S0022476618050050

  32. A. S. Ghasemi, F. Ashrafi, S. A. Babanejad, and A. Elyasi, J. Struc. Chem. 60, 13 (2019).https://doi.org/10.1134/S0022476619010037

    Article  CAS  Google Scholar 

  33. E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, et al., Chem. Phys. Lett. 421, 129 (2006).https://doi.org/10.1016/j.cplett.2006.01.072

    Article  CAS  Google Scholar 

  34. A. N. Khlobystov, D. A. Britz, and G. A. D. Briggs, Acc. Chem. Res. 38, 901 (2005).https://doi.org/10.1021/ar040287v

    Article  CAS  PubMed  Google Scholar 

  35. K. Yanagi, Y. Miyata, and H. Kataura, Adv. Mater. 18, 437 (2006).https://doi.org/10.1002/adma.200501839

    Article  CAS  Google Scholar 

  36. S. A. Houston, N. S. Venkataramanan, A. Suvitha, and N. J. Wheate, Austral. J. Chem. 69, 1124 (2016).https://doi.org/10.1071/CH16067

    Article  CAS  Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al, Gaussian 09, Revision A.02 (Gaussian, Wallingford CT, 2009).

    Google Scholar 

  38. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).https://doi.org/10.1063/1.433731

    Article  CAS  Google Scholar 

  39. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  40. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  41. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).https://doi.org/10.1063/1.1673095

    Article  CAS  Google Scholar 

  42. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  43. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  44. Y. Zhao and D. G. Truhla, J. Phys. Chem. A 110, 5121 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

    Article  CAS  Google Scholar 

  46. S. Saebø and J. Almlöf, Chem. Phys. Lett. 154, 83 (1989).

    Article  Google Scholar 

  47. M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990).

    Article  CAS  Google Scholar 

  48. M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281 (1990).

    Article  CAS  Google Scholar 

  49. M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994).

    Article  CAS  Google Scholar 

  50. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langer, J. Comput. Chem. 29, 839 (2008).https://doi.org/10.1002/jcc.20823

    Article  CAS  PubMed  Google Scholar 

  51. T. Lu, F. Chen, J. Comp. Chem. 33, 580 (2012).https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  52. S. Liu, J. Chem. Phys. 126, 244 103 (2007).https://doi.org/10.1063/1.2747247

    Article  CAS  Google Scholar 

  53. T. Lu and F. Chen, J. Mol. Graph. Model. 38, 314 (2012).https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  54. T. Kim and H. Park, J. Mol. Graph. Model. 60, 108 (2015).https://doi.org/10.1016/j.jmgm.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  55. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  56. P. W. Ayers and R. G. Parr, J. Am. Chem. Soc. 122, 2010 (2000).https://doi.org/10.1021/ja9924039

    Article  CAS  Google Scholar 

  57. R. G. Parr and P. K. Chattaraj, J. Am. Chem. Soc. 113, 1854 (1991).https://doi.org/10.1021/ja00005a072

    Article  CAS  Google Scholar 

  58. R. G. Pearson, J. Chem. Educ. 64, 561 (1987).https://doi.org/10.1021/ed064p561

    Article  CAS  Google Scholar 

  59. R. G. Pearson, Acc. Chem. Res. 26, 250 (1993).https://doi.org/10.1021/ar00029a004

    Article  CAS  Google Scholar 

  60. R. G. Pearson, J. Chem. Educ. 76, 267 (1999).https://doi.org/10.1021/ed076p267

    Article  CAS  Google Scholar 

  61. J. Padmanabhan, R. Parthasarathi, V. Subramanian, and P. K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007).https://doi.org/10.1021/jp0649549

    Article  CAS  PubMed  Google Scholar 

  62. R. G. Pearson, J. Org. Chem. 54, 1430 (1989).https://doi.org/10.1021/jo00267a035

    Article  Google Scholar 

  63. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  64. P. Geerlings, F. D. Proft, and W. Langenaeker, Chem. Rev. 103, 1793 (2003).https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  65. R. G. Parr, L. Szenpály, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  66. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, New York, 1989).

    Google Scholar 

  67. L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, Chem. Rev. 105, 3513 (2005).https://doi.org/10.1021/cr030083c

    Article  CAS  PubMed  Google Scholar 

  68. R. F. W. Bader, C. F. Matta, and F. Cortés-Guzman, Organometallics 23, 6253 (2004).https://doi.org/10.1021/om049450g

    Article  CAS  Google Scholar 

  69. X. Fradera, M. A. Austen, and R. F. W. Bader, J. Phys. Chem. A 103, 304 (1999).https://doi.org/10.1021/jp983362q

    Article  CAS  Google Scholar 

  70. R. F. W. Bader and D.-F. Fang, J. Chem. Theor. Comput. 1, 403 (2005).https://doi.org/10.1021/ct049839l

    Article  CAS  Google Scholar 

  71. P. M. Mitrasinovic, Can. J. Chem. 81, 542 (2003).https://doi.org/10.1139/v03-043

    Article  CAS  Google Scholar 

  72. D. Cremer and E. Kraka, Croat. Chem. Acta 57, 1259 (1984).

    Google Scholar 

  73. M. Palusiak, J. Organometallic. Chem. 692, 3866 (2005).https://doi.org/10.1016/j.jorganchem.2007.05.029

    Article  CAS  Google Scholar 

  74. P. Macchi and A. Sironi, Coord. Chem. Rev. 239, 383 (2003).https://doi.org/10.1016/S0010-8545(02)00252-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozhdeh Shabani, Ghiasi, R., Zare, K. et al. Quantum Chemical Study of Interaction between Titanocene Dichloride Anticancer Drug and Al12N12 Nano-Cluster. Russ. J. Inorg. Chem. 65, 1726–1734 (2020). https://doi.org/10.1134/S0036023620110169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620110169

Keywords:

Navigation