Skip to main content
Log in

Effect of Carbon on the Oxygen Solubility in an Fe–70% Ni Melt

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

A thermodynamic analysis of the oxygen solutions in carbon-containing Fe, Fe–70% Ni, and Ni melts is performed. The equilibrium constants of the reaction of carbon with oxygen, the activity coefficients at infinite dilution, and the interaction parameters for the melts are determined at 1873 K. The dependences of the oxygen solubility in the melts on the carbon content are calculated. The oxygen concentrations in the Fe and Ni melts with the same carbon content differ by almost two orders of magnitude. The CO and CO2 gaseous oxides are the products of carbon deoxidation. A decrease in the gas pressure substantially increases the deoxidation ability of carbon. The oxygen solubility in the Fe–70% Ni melt with different carbon contents is studied experimentally. The experimental results adequately agree with the calculated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yi Liu, D. J. Sellmyer, and D. Shindo, Handbook of Advanced Magnetic Materials: 4 v. V. I: Advanced Magnetic Materials: Nanostructural Effects (Springer, Boston, 2006).

  2. M. Hino and K. Ito, Thermodynamic Data for Steelmaking (Tohoku University Press, Sendai, 2010).

    Google Scholar 

  3. G. K. Sigworth, J. F. Elliott, G. Vaughn, and G. H. Geiger, “The thermodynamics of dilute liquid nickel alloys,” Metall. Soc. CIM, Annual Vol., 104–110 (1977).

    Google Scholar 

  4. I. S. Kulikov, Deoxidation of Metals (Metallurgiya, Moscow, 1975).

    Google Scholar 

  5. A. M. Katsnelson, V. Ya. Dashevskii, and V. I. Kashin, “Calculation of \(\varepsilon _{{\text{C}}}^{i}\) parameters in iron-, cobalt-, nickel-, and manganese-based melts using data on the effect of alloying elements on the carbon solubility”, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 12, 7–15 (1992).

  6. E. T. Turkdogan, Fundamentals of Steelmaking (Maney Publishing, Leeds, 2010).

    Google Scholar 

  7. V. Ya. Dashevskii, A. A. Aleksandrov, A. G. Kanevskii, and M. A. Makarov, “Deoxidation equilibrium of vanadium in the iron-nickel melts”, ISIJ Intern. 49 (2), 149–155 (2009).

    Article  CAS  Google Scholar 

  8. M. G. Frohberg and M. Wang, “Thermodynamic properties of sulphur in liquid copper–antimony alloys at 1473 K,” Z. Metallkd. 81 (7), 513–515 (1990).

    CAS  Google Scholar 

  9. K. Lyupis, Chemical Thermodynamics of Materials (Metallurgiya, Moscow, 1989).

    Google Scholar 

  10. A. A. Aleksandrov, M. A. Makarov, and V. Ya. Dashevskii, “Solubility of oxygen in carbon-bearing Fe–Ni melts,” Russ. Metall. (Metally), No. 4, 279–285 (2006).

  11. T. Chiang and Y. A. Chang, “The activity coefficient of oxygen in binary liquid metal alloys,” Met. Trans. B 7, 453–457 (1976).

    Article  Google Scholar 

  12. A. M. Samarin and R. A. Karasev, “On the carbon and oxygen activities in iron–carbon–oxygen melts,” Izv. Akad. Nauk SSSR, OTN, No. 8, 1130–1136 (1953).

    Google Scholar 

  13. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Metals Park ASM, Ohio, 1973).

    Google Scholar 

  14. A. A. Aleksandrov and V. Ya. Dashevskii, “Thermodynamics of the oxygen solutions in chromium-containing Ni–Co melts,” Russ. Metall. (Metally), No. 7, 642–648 (2016).

  15. A. Yu. Polyakov, A. M. Samarin, and Sui Tsen-Tszi, “Thermodynamic characteristics of reaction of carbon and oxygen in liquid iron,” Izv. Akad. Nauk SSSR, OTN, Metall. Toplivo, No. 1, 3–9 (1961).

    Google Scholar 

  16. S. Marshall and J. Chipman, “The carbon–oxygen equilibrium in liquid iron,” Trans. ASM. 30, 695–746 (1942).

    CAS  Google Scholar 

  17. S. Matoba and S. Banya, “Equilibrium of carbon and oxygen in molten iron saturated with carbon,” Tetsu-to-Hagane 43 (8), 790–796 (1957).

    Article  Google Scholar 

  18. T. Fuwa and J. Chipman, “The carbon–oxygen equilibria in liquid iron,” Trans. Met. Soc. AIME 218, 887–891 (1960).

    CAS  Google Scholar 

  19. V. P. Luzgin, A. F. Vishkarev, and V. I. Yavoiskii, “On the interaction of oxygen with carbon in liquid iron,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 1, 22–25 (1965).

  20. N. Matsumoto, “The equilibrium between carbon and oxygen dissolved in liquid iron and carbon monoxide under high pressure,” J. Japan Inst. Metals 31 (4), 460–465 (1967).

    Article  CAS  Google Scholar 

  21. V. T. Burtsev and V. I. Kashin, “Interaction of carbon with oxygen in iron, cobalt, and nickel melts at different partial pressures of carbon oxide,” Stal’, No. 7, 603–608 (1974).

  22. Syui Tszya-Lun, V. I. Kashin, A. Yu. Polyakov, and A. M. Samarin, “Study of deoxidizing capacity of carbon in liquid nickel,” Izv. Akad. Nauk SSSR, Metall. Gorn. Delo, No. 6, 75–80 (1964).

    Google Scholar 

  23. B. V. Linchevskii and V. Ya. Dashevskii, ““Chemical vacuum”—a concept to be refined,” Russ. Metall. (Metally), No. 9, 763–767 (2010).

Download references

Funding

This study was performed in terms of state assignment no. 075-00715-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Aleksandrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.A., Kanevskii, A.G. Effect of Carbon on the Oxygen Solubility in an Fe–70% Ni Melt. Russ. Metall. 2022, 488–495 (2022). https://doi.org/10.1134/S0036029522050020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522050020

Keywords:

Navigation