Skip to main content
Log in

Obtaining multisoliton solutions of the (2+1)-dimensional Camassa–Holm system using Darboux transformations

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct and study Darboux transformations for the \((2{+}1)\)-dimensional Camassa–Holm system. We apply a reciprocal transformation that relates the \((2{+}1)\)-dimensional Camassa–Holm system and the linear system associated with the modified Kadomtsev–Petviashvili hierarchy. Using three Darboux transformation operators, we obtain three types of solutions for the \((2{+}1)\)-dimensional Camassa–Holm system, of which one is a multisoliton solution. In addition, we briefly discuss rational solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R. A. Kraenkel and A. I. Zenchuk, “Two-dimensional integrable generalization of the Camassa–Holm equation,” Phys. Lett. A, 260, 218–224 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. A. Kraenkel, M. Senthilvelan, and A. I. Zenchuk, “Lie symmetry analysis and reductions of a two-dimensional integrable generalization of the Camassa–Holm equation,” Phys. Lett. A, 273, 183–193 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. R. Gordoa, A. Pickering, and M. Senthilvelan, “A note on the Painlevé analysis of a (2+1) dimensional Camassa–Holm equation,” Chaos Solitons Fractals, 28, 1281–1284 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. I. Zenchuk, “The spectral problem and particular solutions to the (2+1)-dimensional integrable generalization of the Camassa–Holm equation,” Phys. D, 152–153, 178–188 (2001).

    Article  MathSciNet  Google Scholar 

  5. N. Lv, J.-Q. Mei, and H.-Q. Zhang, “Differential form method for finding symmetries of a (2+1)-dimensional Camassa–Holm system based on its Lax pair,” Chaos Soliton Fractals, 45, 503–506 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Camassa and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett., 71, 1661–1664 (1993); arXiv:patt-sol/9305002v1 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Fuchssteiner and A. S. Fokas, “Symplectic structures, their Bäcklund transformation, and hereditary symmetries,” Phys. D, 4, 47–66 (1981).

    Article  MathSciNet  Google Scholar 

  8. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    Book  Google Scholar 

  9. L.-L. Chau, J.-C. Shaw, and M.-H. Tu, “Solving the constrained KP hierarchy by gauge transformations,” J. Math. Phys., 38, 4128–4137 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Oevel and C. Rogers, “Gauge transformations and reciprocal links in 2+1 dimensions,” Rev. Math. Phys, 5, 299–330 (1993).

    Article  MathSciNet  Google Scholar 

  11. W. Oevel, “Darboux theorems and Wronskian formulas for integrable system I: Constrained KP flows,” Phys. A, 195, 533–576 (1993).

    Article  MathSciNet  Google Scholar 

  12. J.-C. Shaw and M.-H. Tu, “Miura and auto-Bäcklund transformations for the cKP and cmKP hierarchies,” J. Math. Phys., 38, 5756–5773 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. J. C. Shaw and H. C. Yen, “Miura and Bäcklund transformations for hierarchies of integrable equations,” Chin. J. Phys., 31, 709–719 (1993).

    Google Scholar 

  14. R. Willox, I. Loris, and C. R. Gilson, “Binary Darboux transformations for constrained KP hierarchies,” Inverse Problems, 13, 849–865 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Cheng, “The gauge transformation of the modifified KP hierarchy,” J. Nonlinear Math. Phys., 25, 66–85 (2018).

    Article  MathSciNet  Google Scholar 

  16. Y. Li and J. E. Zhang, “The multiple-soliton solution of the Camassa–Holm equation,” Proc. R. Soc. London Ser. A, 460, 2617–2627 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Xia, R. Zhou, and Z. Qiao, “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation,” J. Math. Phys., 57, 103502 (2016); arXiv:1506.08639v2 [nlin.SI] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  18. B. Konopelchenko, Solitons in Multidimensions: Inverse Spectral Transform Method, Singapore, World Scientific (1993).

    Book  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11905110 and 11871471), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2018GXNSFBA050020), and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Guangxi Zhuang Autonomous Region, China (Grant No. 2019KY0417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Mao.

Ethics declarations

The author declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, H. Obtaining multisoliton solutions of the (2+1)-dimensional Camassa–Holm system using Darboux transformations. Theor Math Phys 205, 1638–1651 (2020). https://doi.org/10.1134/S0040577920120065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920120065

Keywords

Navigation