Skip to main content
Log in

Spatial and Statistical Variability Analyses of Satellite-Based Climatic Data in Mereb-Gash Basin

  • INTERACTION BETWEEN CONTINENTAL WATERS AND THE ENVIRONMENT
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Global reanalysis products are extensively used for hydrologic applications in sparse data regions. The establishment of some inputs for hydrologic modelling from global reanalysis requires prior scrutiny and assessment. Thus, the present study attempts to exploit Climate Forecast System Reanalysis datasets for the Mereb-Gash river basin in Eritrea, with the objective of preparing input data for future hydrological modelling efforts as well as climate characterization. The research activities include statistical analysis of reanalysis datasets, computation of potential evapotranspiration and drought indices using different approaches. Results show that there were predominantly significant monotonic trends in most of the data; precipitation and relative humidity exhibited significant decreasing trends, whereas increasing trends were detected in temperature and potential evapotranspiration. Three potential evapotranspiration estimation methods were employed out of which the Thornthwaite method showed a considerable dependence on elevation of a station. In most cases, Penman-Monteith provides higher estimates than Hargreaves and Thornthwaite equations. Besides, drought indices based on standardized precipitation evapotranspiration and rainfall anomaly demonstrate the presence of persistent dry conditions over the period 2000 to 2013 and predominantly humid conditions from 1979 through the end of 1990s. The findings of this study imply that presence of significant trends in most of the climatic variables and persistent drought conditions in recent years may ultimately be associated to human and climate influences on the environment. Thus, concerted and effective countermeasures should be executed in the study area to reverse the existing ecological imbalances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ahmad, M.I., Sinclair, C.D., and Werritty, A., Log-logistic flood frequency analysis, J. Hydrol., 1988, vol. 98, nos. 3–4, pp. 205–224.

    Article  Google Scholar 

  2. Ahn, K.H. and Palmer, R.N., Trend and variability in observed hydrological extremes in the United States, J. Hydrol. Eng., 2016, vol. 21, no. 2, pp. 04015061-1- 04015061-10.

  3. Alemngus, A., Amlesom, S., and Bovas, L.J.J, An overview of Eritrea’s water resources, Int. J. Engin. Res. Dev., 2017, vol. 13, no. 3, pp. 74–84.

    Google Scholar 

  4. Alemngus, A. and Mathur, B.S., Geomorphologic Instantaneous Unit Hydrographs for Rivers in Eritrea (East Africa), J. Indian Water Resour. Soc., 2014, vol. 34, no. 1, pp. 1–14.

    Google Scholar 

  5. Allen, R., Smith, M., Perrier, A., and Pereira, L., An update for the definition of reference evapotranspiration and an update for the calculation of reference evapotranspiration, in ICID Bull. In. Commission on Irrigation and Drainage, 1994, vol. 43, no. 2, pp. 1–34.

  6. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., Crop evapotranspiration: Guidelines for computing crop requirements, 1998.

  7. Auerbach, D.A., Easton, Z.M., Walter, M.T., Flecker, A.S., and Fuka, D.R., Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modelling in the tropics, Hydrol. Process., 2016, vol. 30, no. 19, pp. 3466–3477.

    Article  Google Scholar 

  8. Bashar, K.E., Gash river flash floods challenges to Kassala town: Mitigation and risk management, Sudan Eng. Soc. J., 2011, vol. 57, no. 1.

  9. Beguería, S., Vicente-Serrano, S.M., Reig, F., and Latorre, B., Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, Int. J. Climatol., 2014, vol. 34, no. 10, pp. 3001–3023.

    Article  Google Scholar 

  10. Beven, K.J., Rainfall-Runoff modelling: The primer, Chichester: Wiley, 2012.

    Book  Google Scholar 

  11. Cunderlik, J.M. and Burn, D.H., Linkages between regional trends in monthly maximum flows and selected climatic variables, J. Hydrol. Eng., 2004, vol. 9, no. 4, pp. 246–256.

    Article  Google Scholar 

  12. Dile, Y.T. and Srinivasan, R., Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River basin, J. Am. Water Resour. Assoc., 2014, vol. 50, no. 5, pp. 1226–1241.

    Article  Google Scholar 

  13. Douglas, E.M., Vogel, R.M., and Kroll, C.N., Trends in floods and low flows in the United States: Impact of spatial correlation, J. Hydrol., 2000, vol. 240, nos. 1–2, pp. 90–105.

    Article  Google Scholar 

  14. Droogers P. and Allen, R.G., Estimating reference evapotranspiration under inaccurate data conditions, Irrig. Drain. Syst., 2002, vol. 16, no. 1, pp. 33–45.

    Article  Google Scholar 

  15. Elhassan, E.S.E., Ibrahim, A.M., and Ibrahim Abdalla, A., Flood modeling water appraisal and land reclamation: A case study of Gash River, SUST J. Eng. Comput. Sci., 2015, vol. 16, no. 3, pp. 37–45.

    Google Scholar 

  16. Fuka, D.R., Walter, M.T., Macalister, C., Degaetano, A.T., Steenhuis, T.S., and Easton, Z.M., Using the Climate Forecast System Reanalysis as weather input data for watershed models, Hydrol. Process., 2014, vol. 28, no. 22, pp. 5613–5623.

    Article  Google Scholar 

  17. Gehbrehiwot, A. and Kozlov, D., GIUH-Nash based runoff prediction for Debarwa catchment in Eritrea, E3S Web of Conf., 2019, vol. 97, p. 05001.

  18. Ghebrehiwot, A.A. and Kozlov, D.V., Hydrological modelling for ungauged basins of arid and semi-arid regions: review, Vestn. MGSU, 2019, no. 8, pp. 1023–1036.

  19. Ghebrehiwot, A.A. and Kozlov, D.V., Statistical and spatial variability of climate data in the Mareb-Gash river basin in Eritrea, Vestn. MGSU, 2020, vol. 15, no. 1, pp. 85–99.

    Article  Google Scholar 

  20. Ghebrezgabher, M.G., Yang, T., and Yang, X., Long-term trend of climate change and drought assessment in the Horn of Africa, Adv. Meteorol., 2016, vol. 2016. https://doi.org/10.1155/2016/8057641

  21. Gotardo, J.T., Rodrigues, L.N. and Gomes, B.M., Comparison of methods for estimating reference evapotranspiration: An approach to the management of water resources within an experimental basin in the brazilian cerrado, Eng. Agric., 2016, vol. 36, no. 6, pp. 1016–1026.

    Google Scholar 

  22. Hamed, K.H. and Rao, R.A., A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 1998, vol. 204, nos. 1–4, pp. 182–196.

    Article  Google Scholar 

  23. Hargreaves, G.H. and Samani, Z.A., Reference crop evapotranspiration from temperature, Appl. Eng. Agric., 1985, vol. 1, no. 2, pp. 96–99.

    Article  Google Scholar 

  24. Hosking, J.R., L-Moments: Analysis and estimation of distributions using linear combinations of order statistics, J. R. Stat. Soc. Ser. B, 1990, vol. 52, no. 1, pp. 105–124.

    Google Scholar 

  25. Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J, Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Clark, M.P., Ehret, U., et al., A decade of Predictions in Ungauged Basins (PUB)-a review, Hydrol. Sci. J., 2013, vol. 58, no. 6. pp. 1198–1255.

    Article  Google Scholar 

  26. IPCC, Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems-Summary for Policymakers, 2019.

  27. Jabloun, M. and Sahli, A., Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data. Application to Tunisia, Agric. Water Manag., 2008, vol. 95, no. 6, pp. 707–715.

    Article  Google Scholar 

  28. Kendall, M.G., Rank Correlation Methods, London: Charles Griffin, 1975, 4th Ed.

    Google Scholar 

  29. Kozlov, D.V. and Ghebrehiwot, A.A., Efficacy of digital elevation and Nash models in runoff forecast, Mag. Civ. Eng., 2019, vol. 87, no. 3, pp. 103–122.

    Google Scholar 

  30. Kulkarni, A. and Von Storch, H., Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend, Meteorol. Zeitschrift, 1995, vol. 4, no. January, pp. 82–85.

    Article  Google Scholar 

  31. Mahto, S.S. and Mishra, V., Does ERA-5 Outperform Other Reanalysis Products for Hydrologic Applications in India, J. Geophys. Res. Atmos., 2019, vol. 124, no. 16, pp. 9423–9441.

    Article  Google Scholar 

  32. Mann, H.B., Nonparametric tests against trend, Econometrica, 1945, vol. 13, pp. 245–259.

    Article  Google Scholar 

  33. McGlynn, B.L., Blöschl, G., Borga, M., Bormann, H., Hurkmans, R., Komma, J., Nandagiri, L., Uijlenhoet, R., and Wagener, T., A data acquisition framework for runoff prediction in ungauged basins, in Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, N.Y.: Cambridge Univ. Press, 2013, pp. 29–52.

    Google Scholar 

  34. Pandey, P. K. and Pandey, V., Evaluation of temperature-based Penman–Monteith (TPM) model under the humid environment, Model. Earth Syst. Environ., vol. 2, no. 3, Sep. 2016.

  35. Sen, P.K., Estimates of the regression coefficient based on Kendall’s tau, J. Am. Stat. Assoc., 1968, vol. 63, pp. 1379–1389.

    Article  Google Scholar 

  36. Shahin, M., Hydrology and Water Resources of Africa. New York: Kluwer, 2003.

    Google Scholar 

  37. Shuttleworth, W.J., Evaporation, in Handbook of Hydrology, N. Y.: McGraw Hill Inc., 1993, p. 4.18.

    Google Scholar 

  38. Singh, V.P., Guo, H., and Yu, F.X., Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome, Stoch. Hydrol. Hydraul., 1993, vol. 7, no. 3, pp. 163–177.

    Article  Google Scholar 

  39. Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H. Lakshmi, V., Liang, X., et al., IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences, Hydrol. Sci. J., 2003, vol. 48, no. 6, pp. 857–880.

    Article  Google Scholar 

  40. Tabari, H. and Hosseinzadeh Talaee P., Analysis of trends in temperature data in arid and semi-arid regions of Iran, Glob. Planet. Change, 2011, vol. 79, nos. 1–2, pp. 1–10.

    Article  Google Scholar 

  41. Thornthwaite, C.W., An approach toward a rational classification of climate, Geogr. Rev., 1948, vol. 38, no. 1, p. 55.

    Article  Google Scholar 

  42. Van Rooy, M.P., A rainfall anomaly index independent of time and space, Notos, 1965, vol. 14, pp. 43–48.

    Google Scholar 

  43. Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I., A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 2010, vol. 23, no. 7, pp. 1696–1718.

    Article  Google Scholar 

  44. WMO and GWP, Integrated Drought Management Programme Handbook of Drought Indicators and Indices, no. 1173, 2016.

  45. Yue, S. and Wang, C.Y., The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series, Water Resour. Manag., 2004, vol. 18, no. 3, pp. 201–218.

    Article  Google Scholar 

  46. Yue, S., Pilon, P., and Cavadias, G., Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series, J. Hydrol., 2002, vol. 259, nos. 1–4, pp. 254–271.

    Article  Google Scholar 

  47. Yue, S., Pilon, P., Phinney, B., and Cavadias, G., Patterns of trend in Canadian streamflow, 58th East. Snow Conf., 2001, no. April, pp. 1–12.

  48. Yue, S., Pilon, P., Phinney, B., and Cavadias, G., The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Process., 2002, vol. 16, no. 9, pp. 1807–1829.

    Article  Google Scholar 

  49. Zhu, Q., Xuan, W., Liu, L., and Xu, Y.P., Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China, Hydrol. Process., 2016, vol. 30, no. 17, pp. 3061–3083.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anghesom A. Ghebrehiwot or D. V. Kozlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anghesom A. Ghebrehiwot, Kozlov, D.V. Spatial and Statistical Variability Analyses of Satellite-Based Climatic Data in Mereb-Gash Basin. Water Resour 48, 146–157 (2021). https://doi.org/10.1134/S0097807821010152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807821010152

Keywords:

Navigation