Skip to main content
Log in

Thermodynamic Properties of a Yukawa–Schwarzschild Black Hole in Noncommutative Gauge Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We construct a noncommutative gauge theory for the deformed metric corresponding to the modified structure of a gravitational field in the case of noncommutative Yukawa–Schwarzschild space-time. The thermodynamic properties and corrections t o the gravitational force on the horizon of a noncommutative Yukawa–Schwarzschild black hole are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. S. W. Hawking, Commun. Math. Phys. 43, 199–220 (1975).

    Article  ADS  Google Scholar 

  2. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).

    Article  ADS  Google Scholar 

  3. J. D. Anderson et al., Phys. Rev. Lett. 81, 2858 (1998).

    Article  ADS  Google Scholar 

  4. N. Seiberg and E. Witten, JHEP 032, 9909 (1999); hep-th/9908142.

  5. M. Chaichia, P. P. Kulish, K. Nishijima, and A. Tureanu, Phys. Lett. B 604, 98 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Chaichia, P. Presnajder, and A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005).

    Article  ADS  Google Scholar 

  7. X. Calmet and A. Kobakhidze, Phys. Rev. D 74, 047702 (2006); hep-th/0605275.

    Article  ADS  Google Scholar 

  8. P. Aschieri and L. Castellani, JHEP 0906, 086 (2009); hep-th/0902.3817.

  9. P. Aschieri and L. Castellani, JHEP 1207, 184 (2012); hep-th/1111.4822.

  10. S. Hod, Phys. Rev. Lett. 81, 4293 (1998);

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Vaz, Phys. Rev. D 61, 064017 (2000);

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Scharf, Nuovo Cim. B 113, 821 (1998);

    ADS  Google Scholar 

  13. B. Harms and Y. Leblanc, Phys. Rev. D 46, 2334 (1992);

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Hod, Phys. Rev. Lett. 81, 4293 (1998); C. Vaz, Phys. Rev. D 61, 064017 (2000); G. Scharf, Nuovo Cim. B 113, 821 (1998); B. Harms and Y. Leblanc, Phys. Rev. D 46, 2334 (1992); G. Gour, Phys. Rev. D 61 021501 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  15. O. Obregon, M. Sabido, and V. I. Tkach, Gen. Rel. Grav. 33, 913 (2001).

    Article  ADS  Google Scholar 

  16. J. C. Lopez-Dominguez, O. Obregon, M. Sabido, and C. Ramirez, Phys. Rev. D 74, 084024 (2006); hep-th/0607002.

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Chaichian, A. Tureanu, and G. Zet, Phys. Lett. B 660, 573 (2008); hep-th/0710.2075.

  18. I. Haranas and O. Ragos, Astrophys. Space Sci. 334, 71–74 (2011).

    Article  ADS  Google Scholar 

  19. I. Haranas and I. Gkigkitzis, Astrophys Space Sci. 347, 77–82 (2013).

    Article  ADS  Google Scholar 

  20. N. Mebarki, Z. Slimane, L. Khodja, and H. Aissaoui, Phys. Scripta 78, 045101 (2008).

    Article  ADS  Google Scholar 

  21. N. I. Kolosnitsyn and V. N. Melnikov, Gen. Relativ. Grav. 36, 1619 (2004).

    Article  ADS  Google Scholar 

  22. E. V. Pitjeva, Proc. of the IAA RAS 4, St.-Petersburg, 22 (1999), in Russian.

  23. M. Chaichian, A. Tureanu, and G. Zet, Phys. Lett. B 660, 573–578 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  24. I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (ISBN 978-3-540-72121-5, Springer, 2005).

    Google Scholar 

  25. Piero Nicolini, Anais Smailagic, and Euro Spallucci, Phys. Lett. B 632, 547–551 (2006);

  26. Piero Nicolini, Anais Smailagic, and Euro Spallucci, ESA Spec. Publ. 637 (11), 1 (2006);

  27. I. Arraut, D. Batic, and M. Nowakowski, J. Math. Phys. 51, 022503 (2010);

    Article  ADS  MathSciNet  Google Scholar 

  28. Piero Nicolini, Anais Smailagic, and Euro Spallucci, Phys. Lett. B 632, 547–551 (2006); Piero Nicolini, Anais Smailagic, and Euro Spallucci, ESA Spec. Publ. 637 (11), 1 (2006); I. Arraut, D. Batic, and M. Nowakowski, J. Math. Phys. 51, 022503 (2010); I. Arraut, D. Batic, and M. Nowakowski, Class. Quant. Grav. 26, 245006 (2009).

    Article  ADS  Google Scholar 

  29. R. Banerjee and B. R. Majhi, Phys. Lett. B 662, 62 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  30. Rabin Banerjee, Bibhas Ranjan Majhi, and Saurav Samanta, Phys. Rev. D 77, 124035 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Bargueño, S. Bravo Medina, M. Nowakowski, and D. Batic, Eur. Phys. Lett. 117, 60006 (2017).

    Article  ADS  Google Scholar 

  32. Lenin F. Escamilla-Herrera, Eri A. Mena-Barboza, and José Torres-Arenas, Entropy 18 (11), 406 (2016).

    Article  ADS  Google Scholar 

  33. Yun Soo Myung, Yong-Wan Kim, and Young-Jai Park, JHEP 0702, 012 (2007).

  34. J. D. Bjorken and S. Drell, Relativistic Quantum Mechanics and Relativistic Quantum Field Theory (McGraw-Hill, NY, 1964).

    MATH  Google Scholar 

  35. John F. Donoghue, Phys. Rev. Lett. 72, 2996–2999 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Zaim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaim, S., Rezki, H. Thermodynamic Properties of a Yukawa–Schwarzschild Black Hole in Noncommutative Gauge Gravity. Gravit. Cosmol. 26, 200–207 (2020). https://doi.org/10.1134/S0202289320030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320030135

Navigation