Skip to main content
Log in

Tectonic Position of the Late Neoproterozoic–Early Paleozoic Metamorphic Belts within the Tuva–Mongolian Terrane of the Central Asian Orogenic Belt

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Tuva–Mongolian terrane (TMT) of the Central Asian Orogenic Belt is a composite structure with a Vendian–Cambrian terrigenous–carbonate cover. The formation of the northern part of TMT is marked by the granitoids of the Sumsunur Complex with an age of 785 ± 11 Ma. The Sangilen and Khan-Khukhay blocks of its southern part also form a composite structure, which originated during Early Paleozoic (500–490 Ma) low–moderate pressure regional metamorphism reaching amphibolites–granulite facies. The earlier high-pressure metamorphism was established in the Moren Complex of both the blocks. In the Sangilen block, this metamorphism reached conditions of kyanite–garnet–biotite–orthoclase subfacies of amphibolites facies (temperature ~750°C, pressure 9–10 kbar). The upper age limit of this metamorphism is determined by granites with an age of 536 ± 6 Ma, which cut across migmatized biotite gneisses of the Moren Complex. The latter are intruded by the granitoids of the Ortoadir pluton, which were previously dated at 521 ± 12 Ma (U-Pb method, TIMS). Its emplacement predated the Early Paleozoic low–moderate pressure metamorphism, the timing of which is constrained by syn- and postmetamorphic granitoids with ages of 496 ± 4 and 489 ± 3 Ma. The age of 513 ± 4 Ma established for the granitoids of the Ortoadir Complex in the Khan-Khukhay Block more accurately constrains the lower age boundary of collision processes. This determined the amalgamation of the fragments of the high-pressure metamorphic belt with basement and carbonate–shelf cover units of the Tuva–Mongolian terrane, as well as the upper age boundary of early metamorphism. The timing of the main mappable structure of the Khan-Khukhay Block and low–moderate pressure regional metamorphism is marked by the synmetamorphic granitoids with an age of 505 ± 2 Ma. In general, the metamorphic rocks of the Sangilen, Khan-Khukhay, and Kaakhem blocks can be considered as fragments of the Late Ediacaran high-pressure metamorphic belt, which were amalgamated to the western margin of TMT within 515–505 Ma, after emplacement of the granitoids of the Ortoadir Complex, and were reworked by regional Early Paleozoic low–moderate pressure metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Geochronological data presented in the text were obtained by U-Pb zircon dating (ID-TIMS). Ages estimated by other methods are discussed separately.

REFERENCES

  1. Anisimova, I.V., Levitskii, I.V., Salnikova, E.B., et al., Age of the basement of the Gargan Block (East Sayan): results of U-Pb geochronological studies, Izotopnye sistemy i vremya geologicheskikh protsessov. Materialy IV Rossiiskoi konferentsii po izotopnoi geokhronologii (Isotope Systems and Timing of Geological Processes. Proceedings of 4th Conference on Isotope Geochronology), St. Petersburg: Tsentr informatsionnoi kul’tury, 2009, vol. 1, pp. 34–35.

  2. Aranovich, L.Y. and Berman, R.G., Optimized standard state and solution properties of minerals. II. Comparisons, predictions, and applications, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1-2, pp. 25–37.

    Google Scholar 

  3. Azimov, P.Ya., Kozakov, I.K., and Glebovitsky, V.A., Early Paleozoic UHT/LP metamorphism in the Sangilen Block of the Tuvino-Mongolian Massif, Dokl. Earth Sci., 2018, vol. 479, pp. 295–299.

    Google Scholar 

  4. Badarch, G., Cunningham, W.D., and Windley, B.F., A new terrane subdivision for Mongolia: implications for Phanerozoic crustal growth of Central Asia, J. Asian Earth Science, 2002, vol. 21, pp. 87–110.

    Google Scholar 

  5. Belichenko, V.G. and Boos, R.G., Bokson–Khubsugul–Dzabkhan paleomicrocontinent in the structure of the Central Asian Paleozoides, Geol. Geofiz., 1988, no. 12, pp. 20–28.

  6. Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, no. 2, pp. 445–522.

    Google Scholar 

  7. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.

    Google Scholar 

  8. Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals. i. model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1-2, pp. 1–24.

    Google Scholar 

  9. Bibikova, E.V., Karpenko, S.F., Sumin, L.V., et al., U-Pb, Sm-Nd, and K-Ar age of the metamorphic and magmatic rocks of the Ol’khon Region (Western Transbaikalia), Geologiya i geokhronologiya dokembriya Sibirskoi platformy i ee skladchatogo obramleniya (Precambrian Geology and Geochronology of the Siberian Platform and its Fold Framing), Leningrad: Nauka, 1990, pp. 170–183.

    Google Scholar 

  10. Bold, U., Crowley, Ja.L., Smith, E.F., et al., Neoproterozoic to Early Paleozoic tectonic evolution of the Zavkhan terrane of Mongolia: implications for continental growth in the Central Asian Orogenic Belt, Lithosphere, 2016, vol. 8, no. 6, pp. 729–750.

    Google Scholar 

  11. Buriánek, D., Schulmann, K., Hrdličková, K., et al., Geochemical and geochronological constraints on distinct Early-Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag continent in western Mongolia, Gondwana Res., 2017, vol. 47, pp. 200–227.

    Google Scholar 

  12. Demoux, A., Kroner, A., Liu, D., and Badarch, G., Precambrian crystalline basement in Southern Mongolia as revealed by SHRIMP zircon dating, Int. J. Earth Sci.(Geol. Rundsch), 2009, vol. 98, pp. 1365–1380.

    Google Scholar 

  13. Donskaya, T.V., Sklyarov, E.V., Gladkochub, D.P., et al., The Baikal Collisional Metamorphic Belt Dokl. Earth Sci., 2000, vol. 374, pp. 1075–1079.

    Google Scholar 

  14. Donskaya, T.V., Gladkochub, D.P., Fedorovsky, V.S., et al., Pre-collisional (≥0.5 Ga) complexes of the Olkhon Terrane (Southern Siberia) as an echo of events in the Central Asian Orogenic Belt, Gondwana Res., 2017, vol. 42, pp. 243–263.

    Google Scholar 

  15. Gladkochub, D.P., Donskaya, T.V., Fedorovsky, V.S., et al., The Olkhon metamorphic terrane in the Baikal region: an early Paleozoic collage of Neoproterozoic active margin fragments, Russ. Geol. Geophys, 2010, vol. 51, no. 5, pp. 447–460.

    Google Scholar 

  16. Gladkochub, D.P., Donskaya, T.V., and Wingate, M.T.D., Petrology, geochronology, and tectonic implications of c. 500 Ma metamorphic and igneous rocks along the northern margin of the Central-Asian Orogen (Olkhon terrane, Lake Baikal, Siberia), J. Geol. Soc. London, 2008, vol. 165, pp. 235–246.

    Google Scholar 

  17. Goldstein, S.J. and Jacobsen, S.B., Nd and S isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Google Scholar 

  18. Il’in, A.V., Geologicheskoe razvitie Yuzhnoi Sibiri i Mongolii v pozdnem dokembrii-kembrii (Geological Evolution of South Siberia and Mongolia in the Late Precambrian–Cambrian), Moscow: Nauka, 1982.

    Google Scholar 

  19. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Google Scholar 

  20. Keto, L.S. and Jacobsen, S.B., Nd and Sr isotopic variations of Early Paleozoic oceans, Earth Planet. Sci. Lett., 1987, vol. 84, pp. 27–41.

    Google Scholar 

  21. Khain, E.V., Bibikova, E.V., Kröner, A., et al., The most ancient ophiolite of Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications, Earth Planet. Sci. Lett., 2002, vol. 199, nos. 3–4, pp. 311–325.

    Google Scholar 

  22. Kotov, A.B., Salnikova, E.B., Kovach, V.P., et al., Age of metamorphism of the Slyudyanka crystalline complex, southern Baikal Area: U-Pb geochronology of granitoids, Petrology, 1997, vol. 5, no. 4, pp. 338–349.

    Google Scholar 

  23. Kovach, V.P., Matukov, D.I., Berezhnaya, N.G., et al., SHRIMP zircon age of the Gargan block tonalites—find Early Precambrian basement of the Tuvino-Mongolian microcontinent, Central Asia mobile belt 32th Intern. Geological Congress, Florence: 2004, Pt 2, no. 1263.

  24. Kovach, V.P., Kozakov, I.K., Salnikova, E.B., et al., Sources of terrigenous rocks of the Tsaganolom Formation of the shelf cover of the Dzabkhan microcontinent, in Izotopnoe datirovanie geologicheskikh protsessov: novye rezul’taty, podkhody i perspektivy. Materialy VI Rossiiskoi konferentsii po izotopnoi geokhronologii (Isotope Dating of Geological Processes: New Results, Approaches, and Prospects. Proceedings of 4th Russian Conference on Isotope Geochronology), St. Petersburg: IGGD RAN, 2015, pp. 106–108.

  25. Kozakov, I.K., Stuctural features and metamorphism of the Precambrian granitoids of the Sangilen highland, Tuva, Geol. Geofiz., 1976, no. 12, pp. 159–160.

  26. Kozakov, I.K. and Azimov, P.Ya., Geodynamics of the origin of granulites in the Sangilen Block of the Tuva–Mongolian Terrane, Central Asian Orogenic Belt, Petrology, 2017, vol. 25, no. 6, pp. 615–624.

    Google Scholar 

  27. Kozakov, I.K., Kotov, A.B., Salnikova, E.B., et al., Metamorphic age of crystalline complexes of the Tuva–Mongolia massif: the U–Pb geochronology of granitoids, Petrology, 1999, vol. 7, no. 2, pp. 177–191.

    Google Scholar 

  28. Kozakov, I.K., Kotov, A.B., Salnikova, E.B., et al., Timing of the structural evolution of metamorphic rocks in the Tuva-Mongolian Massif, Geotectonics, 2001, vol. 35, no. 3, pp. 165–184.

    Google Scholar 

  29. Kozakov, I.K., Salnikova, E.B., Khain, E.V., et al., Early Caledonian crystalline rocks of the Lake Zone in Mongolia: formation history and tectonic settings as deduced from U–Pb and Sm–Nd datings, Geotectonics, 2002, vol. 36, no. 2, pp. 156–166.

    Google Scholar 

  30. Kozakov, I.K., Kovach, V.P., Yarmolyuk, V.V., et al., Crust-forming processes in the geologic development of the Tuva-Mongolia Massif: Sm-Nd isotopic and geochemical data for granitoids, Petrology, 2003, vol. 11, no. 5, pp. 444–463.

    Google Scholar 

  31. Kozakov, I.K., Nutman, A., Salnikova, E.B., et al., Metasedimentary complexes of the Tuva–Mongolian Massif: age, provenances, and tectonic position, Stratigraphy. Geol. Correlation, 2005, vol. 13, no. 1, pp. 1–20.

    Google Scholar 

  32. Kozakov, I.K., Salnikova, E.B., Yarmolyuk, V.V., et al., Convergent Boundaries and Related Igneous and Metamorphic Complexes in Caledonides of Central Asia, Geotectonics, 2012, vol. 46, no. 1, pp. 16–36.

    Google Scholar 

  33. Kozakov, I.K., Salnikova, E.B., Kovach, V.P., et al., Main stages in the evolution and geodynamic setting of the South Hangay metamorphic belt, Central Asia, Petrology, 2015, vol. 23, no. 4, pp. 309–330.

    Google Scholar 

  34. Kozakov, I.K., Kröner, A., and Kovach, V.P., Early Proterozoic stage in the formation of the basement of the Dzabkhan terrane of the eastern segment of the Central Asian Orogenic Belt, in Tektonika, glubinnoe stroenie i minerageniya Vostoka Azii: IX Kosyginskie chteniya,2016. Materialy Vserossiiskoi konferentsii (Tectonics, Deep Structure, and Metallogeny of East Asia. 9th Kosygin Readings, 2016. Proceedings of All-Russian Conference), Khabarovsk: IT i G DVO RAN, 2016, pp. 35–38.

  35. Kozakov, I.K., Kröner, A., Kovach, V.P., et al., Neoproterozoic stage (~960–930 Ma) in the formation of the island-arc complex of the Dzabkhan terrane of the eastern Central-Asian fold belt, in Tektonika sovremennykh i drevnikh okeanov i ikh okrain. Materialy XLIX tektonicheskogo soveshchaniya, posvyashchennogo 100-letiyu akademika Yu.M. Pushcharovskogo (Tectonics of the Modern and Ancient Oceans and their Margins. Proceedings of 49th Tectonic Conference Dedicated to the 100th Anniversary of the Academician Yu.M. Pushcharovsky), Moscow: GEOS, 2017a, pp. 181–184.

  36. Kozakov, I.K., Kuznetsov, A.B., Erdenezhargal, Ch., et al., Neoproterozoic complexes of the shelf cover of the Dzabkhan terrane basement in the Central Asian Orogenic Belt, Stratigraphy. Geol. Correlation, 2017b, vol. 25, no. 5, pp. 479–491.

    Google Scholar 

  37. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Google Scholar 

  38. Krogh, T.E., Improved accuracy of U-Pb zircon by the creation of more concordant systems using an air abrasion technique, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 637–649.

    Google Scholar 

  39. Kröner, A., Lehmann, J., Schulmann, K., et al., Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion, Am. J. Sci., 2010, vol. 310, pp. 523–574.

    Google Scholar 

  40. Kuzmichev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolian Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages), Moscow: PROBEL-2000, 2004.

  41. Kuzmichev, A.B. and Larionov, A.N., Neoproterozoic island arcs in East Sayan: duration of magmatism (from U-Pb zircon dating of volcanic clastics), Russ. Geol. Geophys., 2013, vol. 54, no. 1, pp. 34–43.

    Google Scholar 

  42. Kuzmichev, A.B. and Larionov, A.N., The Sarkhoi Group in East Sayan: Neoproterozoic (~ 770–800 Ma) volcanic belt of the Andean type, Russ. Geol. Geophys, 2011, vol. 52, no. 7, pp. 685–700.

    Google Scholar 

  43. Kuz’michev, A.B., Zhuravlev, D.Z., Bibikova, E.V., and Kirnozova, T.I., Upper Riphean (790 Ma) granitoids in the Tuva–Mongolian massif: evidence for the Early Baikalian orogenesis, Geol. Geofiz., 2000, vol. 41, no. 10, pp. 1379–1383.

    Google Scholar 

  44. Kuzmichev, A.B., Bibikova, E.V., and Zhuravlev, D.Z., Neoproterozoic (~800 Ma) orogeny in the Tuva–Mongolia massif (Siberia): island arc–continent collision at the northeast Rodinia margin, Precambrian Res., 2001, vol. 110, pp. 109–126.

    Google Scholar 

  45. Kuzmichev, A., Kröner, A., Hegner, E., et al., The Shishkhid ophiolite, northern Mongolia: a key to the reconstruction of a Neoproterozoic island-arc system in Central Asia, Precambrian Res., 2005, vol. 138, pp. 125–150.

    Google Scholar 

  46. Kuznetsov A.B., Letnikova E.F., Vishnevskaya I.A., et al., Sr chemostratigraphy of carbonate sedimentary cover of the Tuva–Mongolian Microcontinent, Dokl. Earth Sci., 2010, vol. 432, no. 3, pp. 577–582.

    Google Scholar 

  47. Lehmann, J., Schulmann, K., Lexa, O., et al., Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia, Am. J. Sci., 2010, vol. 310, pp. 575–628.

    Google Scholar 

  48. Ludwig, K.R., Pbdat for MS-DOS, version 1.21, U.S. Geol. Surv. Open-File Rept., 1991, 88–542.

    Google Scholar 

  49. Ludwig, K.R., Isoplot 3.70. A geochronological toolkit for Microsoft Excel, Berkeley: Geochronol. Center, Spec. Publ., 2003, no. 4.

  50. Macdonald, F.A., Jones, D.S., and Schrag, D.P., Stratigraphic and tectonic implications of a newly discovered glacial diamictite-cap carbonate couplet in Southwestern Mongolia, Geology, 2009, vol. 37, no. 2, pp. 123–126.

    Google Scholar 

  51. Mitrofanov, F.P., Kozakov, I.K., and Palei, I.P., Dokembrii Zapadnoi Mongolii i Yuzhnoi Tuvy (Precambrian Western Mngolia and Southern Tuva), Leningrad: Nauka, 1981.

    Google Scholar 

  52. Mossakovskii, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Central Asian Orogenic Belt: geodynamic evolution and history of formation, Geotektonika, 1993, no. 6, pp. 3–33.

  53. Nozhkin, A.D., Turkina, O.M., Bibikova, E.V., et al., Stage of metamorphism and granite formation in the Neoproterozoic accretionary–collisional belt in the northwestern East Sayan, in Izotopnaya geokhronologiya v reshenii problem geodinamiki i rudogeneza: Tez dokl (Isotope Geochronology in Solution of Geodynamic and Ore Genesis), St. Petersburg: Tsentr informatsionnoi kul’tury, 2003, pp. 339–341.

  54. Rojas-Agramonte, Y., Kröner, A., Alexeiev, D.V., et al., Detrital and igneous zircon ages for supracrustal rocks of the Kyrgyz Tianshan and palaeogeographic implications, Gondwana Res., 2014, vol. 26, pp. 957–974.

    Google Scholar 

  55. Rudnev, S.N., Serov, P.A., Kiselev, V.Yu., Vendian–Early Paleozoic granitoid magmatism of Eastern Tuva, Russ. Geol. Geophys., 2015, vol. 56, no. 9, pp. 1232–1255.

    Google Scholar 

  56. Ruzhentsev, S.V., Badarch, G., Voznesenskaya, T.A., and Markova, N.G., Tectonics of Southern Mongolia, in Evolyutsiya geologicheskikh protsessov i metallogeniya Mongolii. Tr. Sovmestnoi Sovetsko-Mongol’skoi geologicheskoi ekspeditsii, (Evolution of the Geological Processes and Metallogeny of Mongolia), Moscow: Nauka, 1990. Vyp. 49, pp. 11–122.

  57. Salnikova, E.B., Kozakov, I.K., Kotov, A.B., et al., Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian massif of the Central Asian mobile belt: loss of Precambrian Microcontinent, Precambrian Res., 2001, vol. 110, pp. 143–164.

    Google Scholar 

  58. Shkol’nik, S.I., Stanevich, A.M., Reznitsky, L.Z., and Savel’eva, V.B., New data about structure and time of formation of the Khamar-Daban Terrane: U-Pb LA-ICP-MS zircon ages, Stratigraphy. Geol. Correlation, 2016, vol. 24, no. 1, pp. 19–38.

    Google Scholar 

  59. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Google Scholar 

  60. Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.

    Google Scholar 

  61. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Evolution and Composition, London: Blackwell, 1985.

    Google Scholar 

  62. Vladimirov, A.G., Volkova, N.I., Mekhonoshin, A.S., et al., The geodynamic model of formation of Early Caledonides in the Olkhon Region (West Pribaikalie), Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 203–209.

    Google Scholar 

  63. Wilhem, C., Brian, F., Windley, B.F., and Stampfli, G.M., The Altaids of Central Asia: a tectonic and evolutionary innovative review, Earth Sci. Rev., 2012, vol. 113, pp. 303–341.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed in the framework of State Task no. 0153-2018-0003 and the project of Russian Foundation for Basic Researches no. 17-05-00130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kozakov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakov, I.K., Salnikova, E.B., Anisimova, I.V. et al. Tectonic Position of the Late Neoproterozoic–Early Paleozoic Metamorphic Belts within the Tuva–Mongolian Terrane of the Central Asian Orogenic Belt. Petrology 27, 43–58 (2019). https://doi.org/10.1134/S086959111805003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111805003X

Keywords:

Navigation