Skip to main content
Log in

Experimental Study of Amphibole Crystallization from the Highly Magnesian Melt of Shiveluch Volcano, Kamchatka

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports results of an experimental study of amphibole crystallization from the highly magnesian andesite melt of Shiveluch volcano, Kamchatka. The experiments were carried out in IHPV at 300 MPa and 940–980°С in iron-saturated platinum capsules, using rapid quenching and temperature oscillations (in some experiments). The redox state of iron in the system was measured before and after the experiments using Mössbauer spectroscopy. The maximum size of the experimental amphibole crystals (up to 200 μm) was close to those of natural amphibole phenocrysts in the volcanic rocks of Shiveluch volcano. The experimental data show that the content of octahedrally coordinated Al (Al6) in the amphibole considerably varies with small variations in the intensive parameters (P, T, and \(f{{{\text{O}}}_{2}}\)) and composition of the melt, and the maximum Al6 concentration can be evaluated only by using a reasonably large dataset of amphibole analyses. A modified 13eCNK method is suggested to calculate the values of Al6 and Fe3+/Fe2+ with regard for the Ti concentration and the probable partial transfer of Mg into site B in high-Mg amphibole. Calculations with this modified technique yield lower Fe3+/Fe2+ and higher Al6 values. Our experimental data show that the temperature of amphibole liquidus crystallization decreases from about 990°C to 960°C when the oxygen fugacity drops from NNO + 1.5 to NNO + 0.4. In view of this, the transition from amphibole-bearing to anhydrous mineral assemblage in the magmas of Shiveluch volcano might have been caused by variations of the oxygen fugacity but not water. The application of our geobarometer to amphiboles from Shiveluch volcano (extrusions Krasnaya and Karan) yields the highest pressure estimate of above 1 GPa, corresponding to the PT conditions of the melting of garnet-bearing amphibolite in the lower crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Adam, J., Oberti, R., Cámara, F., and Green, T.H., An electron microprobe, LAM-ICP-MS and single-crystal X‑ray structure refinement study of the effects of pressure, melt–H2O concentration and fO2 on experimentally produced basaltic amphiboles, Eur. J. Mineral, 2007, vol. 19, pp. 641–655.

    Article  Google Scholar 

  2. Almeev, R.R., Holtz, F., Ariskin, A.A., and Kimura, J.-I., Storage conditions of Bezymianny volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 1389–1414. https://doi.org/10.1007/s00410-013-0934-x

    Article  Google Scholar 

  3. Anderson, J.L. and Smith, D.R., The effects of temperature and fO2 on the Al-in-hornblende barometer, Am. Mineral., 1995, vol. 80, pp. 549–559.

    Article  Google Scholar 

  4. Balesta, S.T., Zubin, M.M., Kargopol’tsev, A.A., and Fedorchenko, I.A., Deep structure of eruption region, Bol’shoe Tolbachinskoe izverzhenie, Kamchatka 1975–1976 gg (Great Tolbachik Fissure Eruption, 1975–1976), Moscow: Nauka, 1984, pp. 514–536.

    Google Scholar 

  5. Berndt, J., Liebske, C., Holtz, F., et al., A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts, Am. Mineral., 2002, vol. 87, pp. 1717–1726.

    Article  Google Scholar 

  6. Bogolepov, M.I. and Epel’baum, M.B., Melting in the fluid–silicate system and modeling granitizaion, Ocherki fiz.-khim. petrologii (Essays of Physicochemical Petrology), 1991, vol. 16, pp. 6–15.

  7. Chekhmir, A.S., Simakin, A.G., and Epel’baum, M.B., Dinamicheskie yavleniya vo flyuidno-magmaticheskikh sistemakh (Dynamic Phenomena in Fluid-Magmatic Systems), Moscow: Nauka, 1991.

  8. Coldwell, B., Clemens, J., and Petford, N., Deep crustal melting in the Peruvian Andes: felsic magma generation during delamination and uplift, Lithos, 2011, vol. 125, pp. 272–286.

    Article  Google Scholar 

  9. Cottrell, E. and Kelley, K.A., The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle, Chem. Geol., 2009, vol. 268, pp. 167–179.

    Article  Google Scholar 

  10. Cottrell, E., Gardner, J.E., and Rutherford, M.J., Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece), Contrib. Mineral. Petrol., 1999, vol. 135, pp. 315–331.

    Article  Google Scholar 

  11. Davidson, J., Turner, S., Handley, H., et al., Amphibole “sponge” in arc crust?, Geology, 2007, vol. 35, no. 9, pp. 787–790.

    Article  Google Scholar 

  12. Della, Ventura, G., Redhammer, G.J., Iezzi, G., et al., A Mossbauer and FTIR study of synthetic amphiboles along the magnesioriebeckite–ferri-clinoholmquistite join, Phys. Chem. Mineral., 2005, vol. 32, no. 2, pp. 103–113.

    Article  Google Scholar 

  13. Epel’baum, M.B., Silikatnye rasplavy s letuchimi komponentami (Silicate Melts with Volatile Components), Moscow: Nauka, 1980.

  14. Fedotov, S.A., Zharinov, N.A., and Gontovaya, L.I., The magmatic system of the Klyuchevskaya group of volcanoes inferred from data on its eruptions, earthquakes, deformation, and deep structure, J. Volcanol. Seismol., 2010, vol. 4, no. 1, pp. 1–33.

    Article  Google Scholar 

  15. Ford, C.E., Platinum-iron alloy sample containers for melting experiments on iron-bearing rocks, minerals, and related systems, Mineral. Mag., 1978, vol. 42, pp. 271–275.

    Article  Google Scholar 

  16. Ghiorso, M.S. and Gualda, G.A.R., An H2O–CO2 mixed fluid saturation model compatible with rhyolite-melts, Contrib. Mineral. Petrol., 2015, vol. 168, no. 6, p. 53.

    Article  Google Scholar 

  17. Gilbert, M.C., Synthesis and stability relations of the hornblende ferropargasite, Am. J. Sci., 1966, vol. 9, pp. 698–742. https://doi.org/10.2475/ajs.264.9.698

    Article  Google Scholar 

  18. Gorbach, N.V. and Portnyagin, M.V., Geology and petrology of the lava complex of young Shiveluch Volcano, Kamchatka, Petrology, 2011, vol. 19, no. 2, pp. 134–166.

    Article  Google Scholar 

  19. Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., et al., Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends, Contrib. Mineral. Petrol., 2003, vol. 145, pp. 515–533. https://doi.org/10.1007/s00410-003-0448-z

    Article  Google Scholar 

  20. Gualda, G.A.R. and Vlach, S.R.F., Stoichiometry-based estimates of ferric iron in calcic, sodic-calcic and sodic amphiboles: a comparison of various methods, An. Acad. Brasil. Ciencias, 2005, vol. 77, no. 3, pp. 521–534.

    Article  Google Scholar 

  21. Hauser, N., Matteini, M., Omarini, R.H., and Pimentel, M.M., Constraints on metasomatized mantle under central South America: evidence from Jurassic alkaline lamprophyre dykes from the eastern Cordillera, NM Argentina, Mineral. Petrol., 2010, vol. 100, pp. 153–184.

    Article  Google Scholar 

  22. Hawthorne, F.C., Oberti, R., Zanetti, A., and Czamanske, G.K., The role of Ti in hydrogendeficient amphiboles: sodic-calcic and sodic amphiboles from Coyote Peak, California, Can. Mineral., 1998, vol. 36, pp. 1253–1265.

    Google Scholar 

  23. Ivanov, B.V., Andesites of Kamchatka, Spravochnik khimicheskikh analizov vulkanitov i osnovnykh porodoobrazuyushchikh mineralov (A Handbook of Chemical Analyses of Volcanic rocks and Main Rock-Forming Mineral), Koloskov, A.V., Eds., Moscow: Nauka, 2008.

    Google Scholar 

  24. Jayasuriya, K.D., O’Neill, H.S.C., Berry, A.J., and Campbell, S.J., A Mössbauer study of the oxidation state of Fe in silicate melts, Am. Mineral., 2004, vol. 89, pp. 1597–1609.

    Article  Google Scholar 

  25. Johnson, M.E. and Rutherford, M.J., Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks, Geology, 1989, vol. 17, pp. 837–841.

    Article  Google Scholar 

  26. Koloskov, A.V., Anan’ev, V.V., and Puzankov, M.Yu., Amphibole in Quaternary hawaiites of the Kekuknai volcanic massif (Kamchatka) as indicator of decompressional evolution of melts of elevated alkalinity, Zap. Vseross. Mineral. O‑va, 2014, no. 2, pp. 94–115.

  27. Koulakov, I., Multiscale seismic tomography imaging of volcanic complexes. updates in volcanology—a comprehensive approach to volcanological problems, Updates in Volcanology. A Comprechensive Approach to Volcanological Problems, Stoppa, F., Ed., IntechOpen, 2012, pp. 207–242. https://doi.org/10.5772/24653

    Google Scholar 

  28. Krawczynski, M.J., Grove, T.L., and Behrens, H., Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 317–319. https://doi.org/10.1007/s00410-012-0740-x

    Article  Google Scholar 

  29. Kuznetsov, A.D. and Epel’baum, M.B., Evtekticheskie sootnosheniya v otkrytykh sistemakh s vpolne podvizhnymi komponentami (Eutectic Relations in Open Systems with Perfectly Mobile Components), Moscow: Nauka, 1985.

  30. Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names, Am. Mineral., 1997, vol. 82, nos. 9–10, pp. 1019–1037.

    Google Scholar 

  31. Levin, V., Droznina, S., Gavrilenko, M., Carr, M.J., and Senyukov, S., Seismically active subcrustal magma source of the Klyuchevskoy Volcano in Kamchatka, Russia, Geology, 2014. https://doi.org/10.1130/G35972.1

  32. Melekestsev, I.V., Volynets, O.N., Ermakov, V.A., et al., Shiveluch Volcano, Deistvuyushchie vulkany Kamchatki (Active Volcanoes of Kamchatka), Moscow: Nauka, 1991, vol. 1, pp. 84–97.

    Google Scholar 

  33. Menyailov, A.A., Vulkan Shiveluch—ego geologicheskoe stroenie, sostav i izverzheniya (Shiveluch Volcano: its Geological Structure, Composition, and Eruptions), Tr. Laboratorii vulkanologii AN SSSR, 1955, vol. 9.

  34. Mössbuaer Mineral Handbook // Eds. J.G. Stevens, A.M. Khasanov, J.W. Miller, et al. Mössbauer Effect Data Center. North Carolina. Asheville: University of North Carolina at Asheville, 2005.

  35. Putirka, K., Thermometers and barometers for volcanic systems, Putirka, K. and Tepley, F., Eds., Minerals, Inclusions and Volcanic Processes, Rev. Mineral. Geochem. Mineral Soc. Am., 2008, vol. 69, pp. 61–120.

    Book  Google Scholar 

  36. Ridolfi, F., Renzulli, A., and Puerini, M., Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes,Contrib. Mineral. Petrol., 2010, vol. 160, pp. 45–66. https://doi.org/10.1007/s00410-009-0465-7

    Article  Google Scholar 

  37. Rutherford, J. and Hill, P.M., Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions, J. Geophys. Res., 1993, vol. 98, pp. 19667–19685.

    Article  Google Scholar 

  38. Schmidt, M.W., Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer, Contrib. Mineral. Petrol., 1992, vol. 110, pp. 304–310.

    Article  Google Scholar 

  39. Simakin, A.G. and Salova, T.P., Evolution of bubble size distribution during the gradual degassing of granitic melt: experimental data, Geochem. Int., 2001, vol. 39, no. 3, pp. 258–267.

    Google Scholar 

  40. Simakin, A.G. and Shaposhnikova, O.Yu., Novel amphibole geobarometer for high-magnesium andesite and basalt magmas, Petrology, 2017, vol. 25, no. 2, pp. 226–240.

    Article  Google Scholar 

  41. Simakin, A.G., Salova, T.P., and Armienti, P., Kinetics of clinopyroxene growth from a hydrous hawaiite melt, Geochem. Int., 2003, vol. 41, no. 12, pp. 1165–1175.

    Google Scholar 

  42. Simakin, A.G., Salova, T.P., and Babansky, A.D., Amphibole crystallization from a water-saturated andesite melt: experimental data at P = 2 kbar, Petrology, 2009, vol. 17, no. 6, pp. 591–605.

    Article  Google Scholar 

  43. Simakin А.G., Zakrevskaya O., Salova T.P., Novel Amphibole Geo-barometer with Application to Mafic Xenoliths, Earth Sci. Res., 2012, vol. 1, no. 2, pp. 82–97.

  44. Spear, F.S., An experimental study of hornblende stability and compositional variability in amphibolite, Am. J. Sci., 1981, vol. 281, pp. 697–734.

    Article  Google Scholar 

  45. Tatsumi, Y., Shukuno, H., Tani, K., et al., Structure and growth of the Izu–Bonin–Mariana arc crust: 2. Role of crust–mantle transformation and the transparent Moho in arc crust evolution, J. Geophys. Res., 2008, vol. 113, p. B02203. https://doi.org/10.1029/2007JB00512

    Article  Google Scholar 

  46. Volynets, O.N., Ponomareva, V.V., and Babansky, A.D., Magnesian basalts of Shiveluch andesite volcano, Kamchatka, Petrology, 1997, vol. 5, no. 2, pp. 183–196.

    Google Scholar 

  47. Votyakov, S.L., Suetin, V.P., and Mironov, A.B., Isomorphism of iron ions in the natural staurolite and amphibole according to Mössbauer spectroscopy data, Phys. Met. Metallurg., 2007, vol. 104, no. 4, pp. 425–434.

    Article  Google Scholar 

  48. Yogodzinski, G.M., Lees, J.M., Churikova, T.G., et al., Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges, Nature, 2001, vol. 409, pp. 500–504.

    Article  Google Scholar 

  49. Zakrevskaya, O. and Salova, T.P., Novel amphibole geo-barometer with application to mafic xenoliths, Earth Sci. Res., 2012, vol. 1, no. 2, pp. 82–97.

    Google Scholar 

  50. Zhang, H.L., Solheid, P.A., Lange, R.A., et al., Accurate determination of Fe3+/ΣFe of andesitic glass by Mössbauer spectroscopy, Am. Mineral., 2006, vol. 100, pp. 1967–1977.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank K.I. Shmulovich (Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences) for his review that allowed us to significantly improve the manuscript.

Funding

This study was carried out under government-financed Program AAAA-A18-118020590141-4 for the Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, in 2019–2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Simakin or V. N. Devyatova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simakin, A.G., Devyatova, V.N., Salova, T.P. et al. Experimental Study of Amphibole Crystallization from the Highly Magnesian Melt of Shiveluch Volcano, Kamchatka. Petrology 27, 442–459 (2019). https://doi.org/10.1134/S0869591119050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119050072

Keywords:

Navigation