Skip to main content
Log in

Cubic spline interpolation of functions with high gradients in boundary layers

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Il’in, “Differencing scheme for a differential equation with a small parameter affecting the highest derivative,” Math. Notes 6 (2), 596–602 (1969).

    Article  MATH  Google Scholar 

  2. N. S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer,” USSR Comput. Math. Math. Phys. 9 (4), 139–166 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1992) [in Russian].

    Google Scholar 

  4. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The Theory of Splines and Their Applications (Academic, New York, 1967).

    MATH  Google Scholar 

  5. Yu. S. Zav’yalov, B. N. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  6. A. I. Zadorin, “Method of interpolation for a boundary layer problem,” Sib. Zh. Vychisl. Mat. 10 (3), 267–275 (2007).

    MATH  Google Scholar 

  7. A. I. Zadorin and M. V. Guryanova, “Analogue of a cubic spline for a function with a boundary layer component,” Proceedings of the Fifth Conference on Finite Difference Methods: Theory and Applications (Rousse Univ, Rousse, 2011), pp. 166–173.

    Google Scholar 

  8. A. I. Zadorin, “Lagrange interpolation and Newton–Cotes formulas for functions with a boundary layer component on piecewise uniform meshes,” Numer. Anal. Appl. 8 (3), 235–247 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. L. Zmatrakov, “Convergence of an interpolation process for parabolic and cubic splines,” Proc. Steklov Inst. Math. 138, 75–99 (1977).

    MathSciNet  MATH  Google Scholar 

  10. N. L. Zmatrakov, “A necessary condition for convergence of interpolating parabolic and cubic splines,” Math. Notes 19 (2), 100–107 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (revised ed.) (World Scientific, Singapore, 2012).

    Book  MATH  Google Scholar 

  12. T. Linss, “The necessity of Shishkin decompositions,” Appl. Math. Lett. 14, 891–896 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. de Boor, Practical Guide to Splines (Springer-Verlag, New York, 1978; Radio i Svyaz’, Moscow, 1985).

    MATH  Google Scholar 

  14. S. Demko, “Inverses of band matrices and local convergence of spline projections,” SIAM J. Numer. Anal. 14 (4), 616–619 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  16. A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Basel, 1989).

    Book  Google Scholar 

  17. I. A. Blatov, “Incomplete factorization methods for systems with sparse matrices,” Comput. Math. Math. Phys. 33 (6), 727–741 (1993).

    MathSciNet  MATH  Google Scholar 

  18. Yu. S. Volkov, “On finding a complete interpolation spline via B-splines,” Sib. Elektron. Mat. Izv. 5, 334–338 (2008).

    MATH  Google Scholar 

  19. I. A. Blatov and E. V. Kitaeva, “Convergence of a Bakhvalov grid adaptation method for singularly perturbed boundary value problems,” Numer. Anal. Appl. 9 (1), 34–44 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Blatov or A. I. Zadorin.

Additional information

Original Russian Text © I.A. Blatov, A.I. Zadorin, E.V. Kitaeva, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 1, pp. 9–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blatov, I.A., Zadorin, A.I. & Kitaeva, E.V. Cubic spline interpolation of functions with high gradients in boundary layers. Comput. Math. and Math. Phys. 57, 7–25 (2017). https://doi.org/10.1134/S0965542517010043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517010043

Keywords

Navigation