Skip to main content
Log in

Oxidative Desulfurization of Hydrocarbon Feedstock Using Oxygen as Oxidizing Agent (a Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper presents a review of scientific research in the field of oxidative desulfurization of petroleum fractions with atmospheric oxygen (as an oxidizing agent) published over the past 15–20 years. A comparative analysis of various catalytic systems in this field has been carried out. Promising areas for the development of an effective catalytic system for oxidative desulfurization processes have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. C. Srivastava, RSC Adv. 2, 759 (2012).

  2. A. W. Bhutto, R. Abro, S. R. Gao, et al., J. Taiwan Inst. Chem. Eng. 62, 84 (2016).

    Article  CAS  Google Scholar 

  3. S. Houda, C. Lancelot, P. Blanchard, et al., Catalysts 8, 344 (2018).

    Article  CAS  Google Scholar 

  4. S. A. Yashnik, A. V. Salnikov, M. A. Kerzhentsev, et al., Kinet. Catal. 58, 58 (2017).

    Article  CAS  Google Scholar 

  5. D. Zhao, H. Ren, J. Wang, et al., Energy Fuels 21, 2543 (2007).

    Article  CAS  Google Scholar 

  6. L. Lu, Sh. Cheng, J. Gao, et al., Energy Fuels 21, 383 (2007).

    Article  CAS  Google Scholar 

  7. P. S. Kulkarni and C. A. M. Afonso, Green Chem. 12, 1139 (2010).

    Article  CAS  Google Scholar 

  8. R. Javadli and A. Klerk, Appl. Petrochem. Res. 1, 3 (2012).

    Article  CAS  Google Scholar 

  9. Z. Ismagilov, S. Yashnik, M. Kerzhentsev, et al., Catal. Rev. Sci. Eng. 53, 199 (2011).

    Article  CAS  Google Scholar 

  10. V. M. Fomin, Radical Chain Oxidation of Organic Compounds and Its Inhibition by Phenolic Inhibitors: An Online Study Guide (Nizhegorodskii Gosuniversitet, Nizhny Novgorod, 2010) [in Russian].

    Google Scholar 

  11. R. Neumann, Inorg. Chem. 49, 3594 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. R. Neumann and A. Khenkin, Chem. Commun. 24, 2529 (2006).

    Article  CAS  Google Scholar 

  13. F. Yu, C. Liu, B. Yuan, et al., Catal. Commun. 68, 49 (2015).

    Article  CAS  Google Scholar 

  14. M. Shi, D. Zhang, X. Yu, et al., Fuel Process. Technol. 160, 136 (2017).

    Article  CAS  Google Scholar 

  15. N. Tang, Y. Zhang, F. Lin, et al., Chem. Commun. 48, 11 647 (2012).

    Article  CAS  Google Scholar 

  16. N. Tang, X. Zhao, Z. Jiang, and C. Li, Chin. J. Catal. 35, 1433 (2014).

    Article  CAS  Google Scholar 

  17. H. Lu, Y. Zhang, Z. Jiang, and C. Li, Green Chem. 2, 1954 (2010).

    Article  CAS  Google Scholar 

  18. H. Lu, Y. Zhang, Z. Jiang, and C. Li, Green Chem. 17, 817 (2015).

    Article  CAS  Google Scholar 

  19. M. Tao, H. Zheng, J. Shi, et al., Catal. Surv. Asia 9, 257 (2015).

    Article  CAS  Google Scholar 

  20. C. Jiang, J. Wang, S. Wang, et al., Appl. Catal., B 106, 343 (2011).

    Article  CAS  Google Scholar 

  21. G. Maayan, R. Popovitz-Biro, and R. Neumann, J. Am. Chem. Soc. 128, 4968 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. H. Lu, W. Ren, W. Liao, et al., Appl. Catal., B 138, 79 (2013).

    Article  CAS  Google Scholar 

  23. B. Bertleff, J. Claußnitzer, W. Korth, et al., ACS Sust. Chem. Eng. 5, 4110 (2017).

    Article  CAS  Google Scholar 

  24. Y. Liu, S. Liu, S. Liu, et al., ChemCatChem 5, 3086 (2013).

    Article  CAS  Google Scholar 

  25. S. W. Li, J. R. Li, Y. Gao, et al., Fuel 197, 551 (2017).

    Article  CAS  Google Scholar 

  26. S. W. Li, R. M. Gao, R. L. Zhang, and J. Zhao, Fuel 184, 18 (2016).

    Article  CAS  Google Scholar 

  27. S. W. Li, R. Gao, W. Zhang, et al., Fuel 221, 1 (2018).

    Article  CAS  Google Scholar 

  28. J. W. Ding and R. Wang, Chin. Chem. Lett. 27, 655 (2016).

    Article  CAS  Google Scholar 

  29. I. V. Kozhevnikov, Chem. Rev. 98, 171 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. A. M. Khenkin and R. Neumann, ChemSusChem 4, 346 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. S. H. Mansourian, S. Shahhosseini, and A. Maleki, J. Ind. Eng. Chem. 80, 576 (2019).

    Article  CAS  Google Scholar 

  32. H. Yang, Q. Zhang, J. Zhang, et al., J. Colloid Interface Sci. 554, 572 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Y. Gao, Z. Lv, R. Gao, et al., J. Hazard. Mater. 359, 258 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. J. Gu, M. Liu, S. Xun, et al., Mol. Catal. 483, 110 709 (2020).

    Article  CAS  Google Scholar 

  35. L. Sun, T. Su, J. Xu, et al., Green Chem. 21, 2629 (2019).

    Article  CAS  Google Scholar 

  36. W. Jiang, J. Xiao, L. Dong, et al., ACS Sust. Chem. Eng. 7, 15 755 (2019).

    Article  CAS  Google Scholar 

  37. S. Xun, W. Jiang, T. Guo, et al., J. Colloid Interface Sci. 534, 239 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. X. Yu, M. Shi, S. Yan, et al., Fuel 207, 13 (2017).

    Article  CAS  Google Scholar 

  39. N. M. Okun, T. M. Anderson, and C. L. Hill, J. Am. Chem. Soc. 125, 3194 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. N. M. Okun, T. M. Anderson, and C. L. Hill, J. Mol. Catal., A 197, 283 (2003).

  41. N. M. Okun, J. C. Tarr, D. A. Hilleshiem, et al.ill, J. Mol. Catal., A 246, 11 (2006).

  42. J. Yu, Z. Zhu, Q. Ding, et al., J. Du, Catal. Today 339, 105 (2020).

    Article  CAS  Google Scholar 

  43. X. Zhou, J. Li, X. Wang, et al., Fuel Process. Technol. 90, 317 (2009).

    Article  CAS  Google Scholar 

  44. S. Chen, W. Lu, Y. Yao, et al., React. Kinet. Mech. Catal. 111, 535 (2014).

    Article  CAS  Google Scholar 

  45. N. Zhao, S. Li, J. Wang, et al., J. Solid-State Chem. 225, 347 (2015).

    Article  CAS  Google Scholar 

  46. Y. Zhang, D. Wang, R. Zhang, et al., Catal. Commun. 29, 21 (2012).

    Article  CAS  Google Scholar 

  47. J. Zhang, J. Li, T. Ren, et al., RSC Adv. 4, 3206 (2014).

    Article  CAS  Google Scholar 

  48. T. Buck, H. Bohlen, and D. Wohrle, J. Mol. Catal. 80, 253 (1993).

    Article  CAS  Google Scholar 

  49. I. V. Pletneva and Yu. A. Gavrilov, Izv. Vyssh. Uchebn. Zaved., Khim. Tekhnol. 60 (8), 71 (2017).

    Google Scholar 

  50. Y. Shi, G. Liu, B. Zhang, and X. Zhang, Green Chem. 18, 5273 (2016).

    Article  CAS  Google Scholar 

  51. S. A. Yashnik, A. V. Salnikov, M. A. Kerzhentsev, et al., Kinet. Catal. 58, 58 (2017).

    Article  CAS  Google Scholar 

  52. Y. Lu, Y. Wang, L. Gao, et al., ChemSusChem 1, 302 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. L. Gao, Y. Tang, Q. Xue, et al., Energy Fuels 23, 624 (2009).

    Article  CAS  Google Scholar 

  54. A. T. Nawaf, A. T. Jarullah, and S. A. Gheni, Ind. Eng. Chem. Res. 54, 12 503 (2015).

    Article  CAS  Google Scholar 

  55. J. T. Sampanthar, H. Xiao, J. Dou, et al., Appl. Catal., B 63, 85 (2006).

    Article  CAS  Google Scholar 

  56. A. T. Nawaf, S. A. Gheni, A. T. Jarullah, and I. M. Mujtaba, Fuel Process. Technol. 138, 337 (2015).

    Article  CAS  Google Scholar 

  57. E. V. Boikov, P. A. Vakhrushin, and M. V. Vishnetskaya, Chem. Technol. Fuels Oils 44, 271 (2008).

    Article  CAS  Google Scholar 

  58. E. V. Boikov and M. V. Vishnetskaya, Russ. J. Phys. Chem. A 87, 177 (2013).

    Article  CAS  Google Scholar 

  59. I. S. Tomskii, M. V. Vishnetskaya, P. A. Vakhrushin, and L. A. Tomskaya, Pet. Chem. 57, 908 (2017).

    Article  CAS  Google Scholar 

  60. B. Wang, J. Zhu, and H. Ma, J. Hazard. Mater. 164, 256 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. K. M. Dooley, D. Liu, A. M. Madrid, and F. C. Knopf, Appl. Catal., A 468, 143 (2013).

  62. Y. Dong, J. Zhang, Z. Ma, et al., Chem. Commun. 55, 13 995 (2019).

    Article  Google Scholar 

  63. S. E. Martin and L. I. Rossi, Tetrahedron Lett. 42, 7147 (2001).

    Article  CAS  Google Scholar 

  64. X. Ma, A. Zhou, and C. Song, Catal. Today 123, 276 (2007).

    Article  CAS  Google Scholar 

  65. L. Ban, P. Liu, C. Ma, and B. Dai, Catal. Today 211, 78 (2013).

    Article  CAS  Google Scholar 

  66. C. Ma, B. Dai, C. Xu, et al., Catal. Today 211, 84 (2013).

    Article  CAS  Google Scholar 

  67. J. Long, X. Xie, J. Xu, et al., ACS Catal. 2, 622 (2012).

    Article  CAS  Google Scholar 

  68. Q. Gu, G. Wen, Y. Ding, et al., Green Chem. 19, 1175 (2017).

    Article  CAS  Google Scholar 

  69. W. Zhang, H. Zhang, J. Xiao, et al., Green Chem. 16, 211 (2014).

    Article  CAS  Google Scholar 

  70. P. Wu, W. Zhu, B. Dai, et al., Chem. Eng. J. 301, 123 (2016).

    Article  CAS  Google Scholar 

  71. P. Wu, W. Zhu, Y. Chao, et al., Chem. Commun. 52, 144 (2016).

    Article  CAS  Google Scholar 

  72. T. V. Rao, B. Sain, S. Kafola, et al.g, Energy Fuels 21, 3420 (2007).

    Article  CAS  Google Scholar 

  73. S. R. Livingston and C. C. Landry, J. Am. Chem. Soc. 130, 13 214 (2008).

    Article  CAS  Google Scholar 

  74. S. Murata, K. Murata, K. Kidena, and M. Nomura, Prepr. Pap.–Am. Chem. Soc., Div. Fuel Chem. 48, 531 (2003).

    CAS  Google Scholar 

  75. S. Murata, K. Murata, K. Kidena, and M. Nomura, Energy Fuels 18, 116 (2004).

    Article  CAS  Google Scholar 

  76. W. Guo, C. Wang, P. Lin, and X. Lu, Appl. Energy 88, 175 (2011).

    Article  CAS  Google Scholar 

  77. H. Lu, J. Gao, Z. Jiang, et al., Chem. Commun. 2, 150 (2007).

    Article  Google Scholar 

  78. A. Imtiaz, A. Waqas, and I. Muhammad, Chin. J. Catal. 34, 1839 (2013).

    Article  CAS  Google Scholar 

  79. M. J. Silva and M. G. Teixeira, RSC Adv. 7, 8192 (2017).

  80. J. K. Li, Y. Q. Xu, and C. W. Hu, Inorg. Chem. Commun. 60, 12 (2015).

    Article  CAS  Google Scholar 

  81. S. Ribeiro, D. Julião, L. Cunha-Silva, et al., Fuel 166, 268 (2016).

    Article  CAS  Google Scholar 

  82. H. Mirhoseini and M. Taghdiri, Fuel 167, 60 (2016).

    Article  CAS  Google Scholar 

  83. W. Jiang, H. Li, C. Wang, et al., Energy Fuels 30, 8164 (2016).

    Article  CAS  Google Scholar 

  84. A. Gómez-Paricio, A. Santiago-Portillo, S. Navalón, et al., Green Chem. 18, 508 (2016).

    Article  CAS  Google Scholar 

  85. C. Wang, Z. Chen, W. Zhu, et al., Energy Fuels 31, 1376 (2017).

    Article  CAS  Google Scholar 

  86. Y. Zhang and R. Wang, Diamond Relat. Mater. 73, 161 (2017).

    Article  CAS  Google Scholar 

  87. X. Xu, J. A. Moulijn, E. Ito, et al, ChemSusChem 1, 817 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. V. Dumont, L. Oliviero, F. Mauge, and M. Houalla, Catal. Today 130, 195 (2008).

    Article  CAS  Google Scholar 

  89. P. M. Paniv, S. V. Pysh’ev, V. I. Gaivanovich, and O. I. Lazorko, Chem. Technol. Fuels Oils 42, 159 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Eseva.

Ethics declarations

A. L. Maksimov is the editor-in-chief of the Neftekhmiya (Petroleum Chemistry) journal. The other authors declare that there is no conflict of interest requiring disclosure in this article.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eseva, E.A., Akopyan, A.V., Anisimov, A.V. et al. Oxidative Desulfurization of Hydrocarbon Feedstock Using Oxygen as Oxidizing Agent (a Review). Pet. Chem. 60, 979–990 (2020). https://doi.org/10.1134/S0965544120090091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120090091

Keywords:

Navigation