Skip to main content
Log in

Bifunctional Cobalt-Containing Catalytic Systems Based on SAPO-11 Molecular Sieves in Fischer–Tropsch Synthesis of Fuels

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The study investigated, for the first time with respect to Fischer–Tropsch synthesis of fuels, cobalt-containing catalytic systems based on SAPO-11 molecular sieves with differing secondary porous structure characteristics. Various methods, such as XRD, low-temperature nitrogen adsorption/desorption, SEM, TEM, H2-TPD, and NH3-TPD, were used to characterize the prepared catalysts, which were subsequently examined in hydrocarbon synthesis at 2.0 MPa, 240°C, and gas WHSV = 1000 h–1. The study demonstrated good prospects for micro/mesoporous-structured SAPO-11 as an acid catalyst component for fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. De Klerk, A. and Furimsky, E., Catalysis in the Refining of Fischer-Tropschsyncrude, Annu. Rep. R. Soc. Chem. Sect. B. Org. Chem., 2010. https://doi.org/10.1039/9781849732017-00270

  2. Davis, B.H. and Occelli, M.L., FischerTropsch Synthesis, Catalysts and Catalysis, Amsterdam: Elsevier, 2007.

  3. Khodakov, A.Y., Chu, W., and Fongarland, P., Chem. Rev., 2007, vol. 107, no. 5, p. 1692. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  4. Flory, P.J., J. Am. Chem. Soc., 1936, vol. 58, no. 10, p. 1877. https://doi.org/10.1021/ja01301a016

    Article  CAS  Google Scholar 

  5. Yao, M., Yao, N., Liu, B., Li, S., Xu, L., and Li, X., Catal. Sci. Technol., 2015, vol. 5, no. 5, p. 2821. https://doi.org/10.1039/C5CY00017C

    Article  CAS  Google Scholar 

  6. Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., and Wang, Y., Ind. Eng. Chem. Res., 2016, vol. 55, no. 51, p. 13008. https://doi.org/10.1021/acs.iecr.6b03810

    Article  CAS  Google Scholar 

  7. Sartipi, S., Makkee, M., Kapteijn, F., and Gascon, J., Catal. Sci. Technol., 2014, vol. 4, no. 4, p. 893. https://doi.org/10.1039/c3cy01021j

    Article  CAS  Google Scholar 

  8. Pastore, H.O., Coluccia, S., and Marchese, L., Annu. Rev. Mater. Res., 2005, vol. 35, p. 351. https://doi.org/10.1146/annurev.matsci.35.103103.120732

    Article  CAS  Google Scholar 

  9. Baerlocher, C., McCusker, L.B., and Olson, D.H., Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 2007. https://doi.org/10.1016/B978-0-444-53064-6.X5186-X

  10. Barthomeuf, D., Zeolites, 1994, vol. 14, no. 6, p. 394. https://doi.org/10.1016/0144-2449(94)90164-3

    Article  CAS  Google Scholar 

  11. Hartmann, M. and Elangovan, S.P., Adv. Nanopor. Mater., 2010, vol. 1, p. 237. https://doi.org/10.1016/S1878-7959(09)00104-2

    Article  Google Scholar 

  12. Yadav, R. and Sakthivel, A., Appl. Catal., A, 2014, vol. 481, p. 143. https://doi.org/10.1016/j.apcata.2014.05.010

    Article  CAS  Google Scholar 

  13. Miller, S.J., Micropor. Mater., 1994, vol. 2, no. 5, p. 439. https://doi.org/10.1016/0927-6513(94)00016-6

    Article  CAS  Google Scholar 

  14. Miller, S.J., Stud. Surf. Sci. Catal., 1994, vol. 84, p. 2319. https://doi.org/10.1016/S0167-2991(08)63796-9

    Article  CAS  Google Scholar 

  15. Agliullin, M.R., Khairullina, Z.R., Faizullin, A.V., Petrov, A.I., Badretdinova, A.A., Talzi, V.P., and Kutepov, B.I., Catal. Ind., 2019, vol. 11, no. 1, p. 1 https://doi.org/10.1134/S2070050419010021

    Article  Google Scholar 

  16. Agliullin, M.R., Khairullina, Z.R., Kuvatova, R.Z., and Kutepov, B.I., Catal. Ind., 2020, vol. 12, no. 2, p. 89. https://doi.org/10.1134/S2070050420020026

    Article  Google Scholar 

  17. Kachala, V.V., Khemchyan, L.L., Kashin, A.S., Orlov, N.V., Grachev, A.A., Zalesskiy, S.S., and Ananikov, V.P., Russ. Chem. Rev., 2013, no. 82, p. 648. https://doi.org/10.1070/RC2013v082n07ABEH004413

    Article  CAS  Google Scholar 

  18. Kashin, A.S. and Ananikov, V.P., Russ. Chem. Bull., 2011, vol. 60, no. 12, p. 2602. https://doi.org/10.1007/s11172-011-0399-x

    Article  CAS  Google Scholar 

  19. Emeis, C.A., J. Catal., 1993, vol. 141, no. 2, p. 347. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

  20. Yushchenko, V.V., Russ. J. Phys. Chem. A, 1997, vol. 71, no. 4, p. 547.

    Google Scholar 

  21. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Zubkov, I.N., Sulima, S.I., Soromotin, V.N., and Mitchenko, S.A., Petrol. Chem., 2020, vol. 60, no. 1, p. 81. https://doi.org/10.1134/S0965544120010120

    Article  Google Scholar 

  22. Agliullin, M.R., Faizullin, A.V., Khazipova, A.N., and Kutepov, B.I., Kinet. Catal., 2020, vol. 61, no. 4, p. 654. https://doi.org/10.1134/S002315842004001

    Article  CAS  Google Scholar 

  23. Hartmann, M., Machoke, A.G., and Schwieger, W., Chem. Soc. Rev., 2016, vol. 45, no. 12, p. 3313. https://doi.org/10.1039/c5cs00935a

    Article  CAS  PubMed  Google Scholar 

  24. Agliullin, M.R., Khairullina, Z.R., Faizullin, A.V., and Kutepov, B.I., Petrol. Chem., 2019, vol. 59, no. 3, p. 349. https://doi.org/10.1134/S0965544119030010

    Article  CAS  Google Scholar 

  25. Jin, D., Ye, G., Zheng, J., Yang, W., Zhu, K., Coppens, M.O., and Zhou, X., ACS Catal., 2017, vol. 7, no. 9, p. 5887. https://doi.org/10.1021/acscatal.7b01646

    Article  CAS  Google Scholar 

  26. Guo, L., Bao, X., Fan, Y., Shi, G., Liu, H., and Bai, D., J. Catal., 2012, vol. 294, p. 161. https://doi.org/10.1016/j.jcat.2012.07.016

    Article  CAS  Google Scholar 

Download references

Funding

The study described here was performed with financial support from the Russian Science Foundation (RSF grant no. 19-73-00089), using equipment of the Nanotechnology Center for Collective Use, South Russian State Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Sovremennye Molekulyarnye Sita. Advanced Molecular Sieves, 2021, Vol. 3, No. 1, pp. 133–142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Agliullin, M.R., Zubkov, I.N. et al. Bifunctional Cobalt-Containing Catalytic Systems Based on SAPO-11 Molecular Sieves in Fischer–Tropsch Synthesis of Fuels. Pet. Chem. 61, 378–387 (2021). https://doi.org/10.1134/S0965544121030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121030063

Keywords:

Navigation