Skip to main content
Log in

Lectin involvement in the development of wheat tolerance to cadmium toxicity

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In the roots of bread wheat (Triticum aestivum L.) seedlings, the effects of pretreatment with 28 nM wheat germ agglutinin (WGA) and successive action of 1 mM cadmium acetate on growth, phytohormone balance, lignin deposition, and also cadmium accumulation and distribution were studied. Priority data on cadmium-induced ABA-mediated reversible accumulation of WGA in the roots, which was accompanied by its excretion in the medium of seedling incubation, were obtained. Pretreatment with WGA exerted a clear protective effect on seedling growth in the presence of cadmium, which was based on a decrease in the amplitude of stress-induced shifts in the balance between IAA and ABA and preventing the reduction in the cytokinin level. Acceleration of lignification of the cell walls in the basal parts of roots of seedlings pretreated with WGA and subjected to stress is shown, and this limits cadmium entry into the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HM:

heavy metals

MI:

mitotic index

POL:

peroxidation of lipids

WGA:

wheat germ agglutinin

References

  1. Shakirova, F.M., Avalbaev, A.M., Bezrukova, M.V., and Kudoyarova, G.R., Role of Endogenous Hormonal System in the Realization of the Antistress Action of Plant Growth Regulators on Plants, Plant Stress, 2010, vol. 4, pp. 32–38.

    Google Scholar 

  2. Rock, C.D., Sakata, Y., and Quatrano, R.S., Stress Signaling: The Role of Abscisic Acid (ABA), Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation, Pareek, A., Sopory, S.K., Bohnert, H.J., and Govindjee, Eds., Springer Science + Business Media, 2010, part 1, pp. 33–73.

  3. Raikhel, N.V., Palevitz, B.A., and Haigler, C.H., Abscisic Acid Control of Lectin Accumulation in Wheat Seedlings and Callus Cultures, Plant Physiol., 1986, vol. 80, pp. 167–171.

    Article  PubMed  CAS  Google Scholar 

  4. Shakirova, F.M., Bezrukova, M.V., Aval’baev, A.M., and Fatkhutdinova, R.A., Control Mechanisms of Lectin Accumulation in Wheat Seedlings under Salinity, Russ. J. Plant Physiol., 2003, vol. 50, pp. 301–304.

    Article  CAS  Google Scholar 

  5. Kildibekova, A.R., Bezrukova, M.V., Avalbaev, A.M., Fatkhutdinova, R.A., and Shakirova, F.M., Mechanism of Protection of Root Cell Protection by Wheat Germ Agglutinin in Wheat Seedling Roots under Salinity, Tsitologiya, 2004, vol. 46, pp. 312–315.

    CAS  Google Scholar 

  6. Shakirova, F.M. and Bezrukova, M.V., Current Knowledge of Presumable Functions of Plant Lectins, Zh. Obshch. Biol., 2007, vol. 68, pp. 109–125.

    PubMed  CAS  Google Scholar 

  7. Seregin, I.V. and Ivanov, V.B. Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants, Russ. J. Plant Physiol., 2001, vol. 48, pp. 523–544.

    Article  CAS  Google Scholar 

  8. Polle, A. and Schutzendubel, A., Heavy Metal Signalling in Plants: Linking Cellular and Organismic Responses, Plant Stress Responses, Hirt, H. and Shinozaki, K., Eds., Berlin: Springer-Verlag, 2003, pp. 1–29.

    Google Scholar 

  9. Fusco, N., Micheletto, L., Dal Corso, G., Borgato, L., and Furini, A., Identification of Cadmium-Regulated Genes by cDNA-AFLP in the Heavy Metal Accumulator Brassica juncea L., J. Exp. Bot., 2005, vol. 56, pp. 3017–3027.

    Article  PubMed  CAS  Google Scholar 

  10. Tamas, L., Mistrik, I., Huttova, J., Haluskova, L., Valentovicova, K., and Zelinova, V., Role of Reactive Oxygen Species-Generating Enzymes and Hydrogen Peroxide during Cadmium, Mercury and Osmotic Stresses in Barley Root Tip, Planta, 2010, vol. 231, pp. 221–231.

    Article  PubMed  CAS  Google Scholar 

  11. Hsu, Y.T. and Kao, C.H., Abscisic Acid Accumulation and Cadmium Tolerance in Rice Seedlings, Physiol. Plant., 2005, vol. 124, pp. 71–80.

    Article  CAS  Google Scholar 

  12. Weber, M., Trampczynska, A., and Clemens, S., Comparative Transcriptome Analysis of Toxic Metal Responses in Arabidopsis thaliana and the Cd2+-Hypertolerant Facultative Metallophyte Arabidopsis halleri, Plant Cell Environ., 2006, vol. 29, pp. 950–963.

    Article  PubMed  CAS  Google Scholar 

  13. Van de Mortel, J.E., Schat, H., Moerland, P.D., van Themaat, E.L., van der Ent, S., Blankestijn, H., Ghandilyan, A., Tsiatsiani, S., and Aarts, M.G.M., Expression Differences for Genes Involved in Lignin, Glutathione and Sulphate Metabolism in Response to Cadmium in Arabidopsis thaliana and the Related Zn/Cd-Hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 2008, vol. 31, pp. 301–324.

    Article  PubMed  Google Scholar 

  14. Bezverkhova, N.V., Safronova, V.I., Antonyuk, L.P., and Belimov, A.A., Involvement of the Bacterium Azospirillum brasilense in Wheat Tolerance to Cadmium, Metal Ions Biol. Med., 2002, vol. 7, pp. 268–271.

    CAS  Google Scholar 

  15. Shakirova, F.M., Allagulova, Ch.R., Bezrukova, M.V., Aval’baev, A.M., and Gimalov, F.R., The Role of Endogenous ABA in Cold-Induced Expression of the TADHN Dehydrin Gene in Wheat Seedlings, Russ. J. Plant Physiol., 2009, vol. 56, pp. 720–723.

    Article  CAS  Google Scholar 

  16. Shakirova, F.M. and Bezrukova, M.V., Effect of 24-Epibrassinolide and Salinity on the Levels of ABA and Lectin, Russ. J. Plant Physiol., 1998, vol. 45, pp. 388–391.

    CAS  Google Scholar 

  17. Shakirova, F.M., Kildibekova, A.R., Bezrukova, M.V., and Avalbaev, A.M., Wheat Germ Agglutinin Regulates Cell Division in Wheat Seedlings Roots, Plant Growth Regul., 2004, vol. 42, pp. 175–180.

    Article  CAS  Google Scholar 

  18. Fusconi, A., Repetto, O., Bona, E., Massa, N., Gallo, C., Dumas-Gaudot, E., and Berta, G., Effect of Cadmium on Meristem Activity and Nucleus Ploide in Roots of Pisum sativum L. cv. Frisson Seedlings, Environ. Exp. Bot., 2006, vol. 58, pp. 253–260.

    Article  CAS  Google Scholar 

  19. Furst, G.G., Metody anatomo-gistokhimicheskogo issledovaniya rastenii (Methods for Anatomic and Histological Investigation of Plants), Moscow: Nauka, 1979.

    Google Scholar 

  20. Seregin, I.V. and Ivanov, V.B., Is the Endodermal Barrier the Only Factor Preventing the Inhibition of Root Branching by Heavy Metal Salts? Russ. J. Plant Physiol., 1997, vol. 44, pp. 797–800.

    CAS  Google Scholar 

  21. Bezrukova, M., Kildibekova, A., and Shakirova, F., WGA Reduces the Level of Oxidative Stress in Wheat Seedlings under Salinity, Plant Growth Regul., 2008, vol. 54, pp. 195–201.

    Article  CAS  Google Scholar 

  22. Kholodova, V.P., Volkov, K.S., and Kuznetsov, Vl.V., Adaptation of the Common Ice Plant to High Copper and Zinc Concentrations and Their Potential Using for Phytoremediation, Russ. J. Plant Physiol., 2005, vol. 52, pp. 748–757.

    Article  CAS  Google Scholar 

  23. Bezrukova, M.V., Kildibekova, A.R., Avalbaev, A.M., and Shakirova, F.M., Participation of Wheat Germ Agglutinin in Regulation of Cell Division in Apical Root Meristem of Wheat Seedlings, Tsitologiya, 2004, vol. 46, pp. 35–38.

    CAS  Google Scholar 

  24. Hsu, Y.T. and Kao, C.H., Cadmium-Induced Oxidative Damage in Rice Leaves Is Reduced by Polyamines, Plant Soil, 2007, vol. 29, pp. 27–37.

    Article  Google Scholar 

  25. Davies, W.J., Kudoyarova, G.R., and Hartung, W., Long-Distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought, J. Plant Growth Regul., 2005, vol. 24, pp. 285–295.

    Article  CAS  Google Scholar 

  26. Talanova, V.V., Akimova, T.V., and Titov, A.F., Effect of Whole Plant and Local Heating on the ABA Content in Cucumber Seedling Leaves and Roots and on Their Heat Tolerance, Russ. J. Plant Physiol., 2003, vol. 50, pp. 90–94.

    Article  CAS  Google Scholar 

  27. Van Belleghem, F., Cuypers, A., Semane, B., Smeets, K., Vangronsveld, J., D’Haen, J., and Valcke, R., Subcellular Localization of Cadmium in Roots and Leaves of Arabidopsis thaliana, New Phytol., 2007, vol. 173, pp. 495–508.

    Article  PubMed  Google Scholar 

  28. Seregin, I.V. and Kozhevnikova, A.D., Roles of Root and Shoot Tissues in Transport and Accumulation of Cadmium, Lead, Nickel, and Strontium, Russ. J. Plant Physiol., 2008, vol. 55, pp. 1–22.

    Article  CAS  Google Scholar 

  29. Guo, J., Hu, X., and Duan, R., Interactive Effects of Cytokinins, Light, and Sucrose on the Phenotypes and the Syntheses of Anthocyanins and Lignins in Cytokinin Overproducing Transgenic Arabidopsis, J. Plant Growth Regul., 2005, vol. 24, pp. 93–101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Shakirova.

Additional information

Original Russian Text © M.V. Bezrukova, R.A. Fatkhutdinova, A.R. Lubyanova, A.R. Murzabaev, V.V. Fedyaev, F.M. Shakirova, 2011, published in Fiziologiya Rastenii, 2011, Vol. 58, No. 6, pp. 907–914.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezrukova, M.V., Fatkhutdinova, R.A., Lubyanova, A.R. et al. Lectin involvement in the development of wheat tolerance to cadmium toxicity. Russ J Plant Physiol 58, 1048–1054 (2011). https://doi.org/10.1134/S1021443711060021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711060021

Keywords

Navigation