Skip to main content
Log in

Plant Phenomics: Fundamental Bases, Software and Hardware Platforms, and Machine Learning

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In recent years, a new branch of plant physiology, plant phenomics, which focuses on identifying patterns of organization and changes in plant Phenomes, i.e., physical and biochemical characteristics, considered as a set of phenotypes of a plant organism, has emerged. Phenomics is a postgenomic discipline that actively uses the achievements of the genomic era and bioinformatics. It supplements them with standardized and statistically significant factual material on phenotypes with a high degree of detail. The technique of obtaining and analyzing information about phenotypes in phenomics is called phenotyping. High-performance phenotyping, providing digital automated analysis of large data samples, has become widespread. Recent progress in high-performance phenotyping has been associated with the development of image registration systems in various spectral regions, approaches to cultivating plant objects under standardized conditions, sensory technologies, robotics, and methods for data processing and analysis, such as computer vision and machine learning (artificial neural network). Phenomics technologies have a high information content analysis, surpassing human capabilities, performing measurements in the hyperspectral range using X-ray tomography and ultra-precise “thermal” images, and have a number of other low-invasive and precision approaches. Arrays of data obtained using phenomics technologies are recorded and processed automatically and are free from the problems of subjective assessment and inadequate statistical processing. It is assumed that phenotyping will allow for the creation of digital models of the vital activity processes and the “formation” of plant productivity at the organism level in connection with the dynamics of transcriptomes, proteomes, and metabolomes. Phenomics helps researchers transform a large amount of information received from modern sensors into new knowledge using computer data processing and modeling, reducing the distance from basic science to the practical application of results in crop production and breeding. Phenotyping is actively developing both in laboratory and in greenhouse conditions as well as on open agricultural sites, forests, and in real natural phytocenoses. The review analyzes the current state of plant phenomics with a focus on technical aspects, in particular, the design of hardware-software phenotyping complexes, i.e., phenomics platforms, as well as the use of neural networks in phenotyping of plant organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Furbank, R.T. and Tester, M., Phenomics—technologies to relieve the phenotyping bottleneck, Trends Plant Sci., 2011, vol. 16, p. 635. https://doi.org/10.1016/j.tplants.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Bolger, M., Schwacke, R., Gundlach, H., Schmutzer, T., Chen, J., Arend, D., Oppermann, M., Weise, S., Lange, M., Fiorani, F., Spannagl, M., Scholz, U., Mayer, K., and Usadel, B., From plant genomes to phenotypes, J. Biotechnol., 2017, vol. 261, p. 46. https://doi.org/10.1016/j.jbiotec.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  3. Lee, S. and Persson, P., Financing from family and friends, Rev. Financ. Stud., 2016, vol. 29, p. 2341. https://doi.org/10.1093/rfs/hhw031

    Article  Google Scholar 

  4. White, J.W., Andrade-Sanchez, P., Gore, M.A., Bronson, K.F., Coffelt, T.A., Conley, M.M., Feldmann, K.A., French, A.N., Heun, J.T., Hunsaker, D.J., Jenks, M.A., Kimball, B.A., Roth, R.L., Strand, R.J., Thorp, K.R., et al., Field-based phenomics for plant genetics research, Field Crop. Res., 2012, vol. 133, p. 101. https://doi.org/10.1016/j.fcr.2012.04.003

    Article  Google Scholar 

  5. Araus, J.L. and Cairns, J.E., Field high-throughput phenotyping: the new crop breeding frontier, Trends Plant Sci., 2014, vol. 19, p. 52. https://doi.org/10.1016/j.tplants.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  6. Afonnikov, D.A., Genaev, M.A., Doroshkov, A.V., Komyshev, E.G., and Pshenichnikova, T.A., Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments, Russ. J. Genet., 2016, vol. 52, p. 688. https://doi.org/10.1134/S1022795416070024

    Article  CAS  Google Scholar 

  7. Colaço, A.F., Molin, J.P., Rosell-Polo, J.R., and Escolà, A., Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges, Hortic. Res., 2018, vol. 5, p. 35. https://doi.org/10.1038/s41438-018-0043-0

  8. König, I.R., Auerbach, J., Gola, D., Held, E., Holzinger, E.R., Legault, M.-A., Sun, R., Tintle, N., and Yang, H.C., Machine learning and data mining in complex genomic data—a review on the lessons learned in genetic analysis workshop 19, BMC Genet., 2016, vol. 17, p. S1. https://doi.org/10.1186/s12863-015-0315-8

  9. Cheng, L., Zhang, B., He, L., Ma, F.F., Wang, X.C., Li, H.Y., and Han, Y.H., Constitutive down-regulation of SiSGR gene is related to green millet in Setaria italica,Russ. J. Plant Physiol., 2017, vol. 64, p. 608. https://doi.org/10.1134/S1021443717040045

    Article  CAS  Google Scholar 

  10. Uzal, L.C., Grinblat, G.L., Namías, R., Larese, M.G., Bianchi, J.S., Morandi, E.N., and Granitto, P.M., Seed-per-pod estimation for plant breeding using deep learning, Comput. Electron. Agr., 2018, vol. 150, p. 196. https://doi.org/10.1016/j.compag.2018.04.024

    Article  Google Scholar 

  11. Skelly, D.A., Merrihew, G.E., Riffle, M., Connelly, C.F., Kerr, E.O., Johansson, M., Jaschob, D., Graczyk, B., Shulman, N.J., Wakefield, J., Cooper, S.J., Fields, S., Noble, W.S., Muller, E.G.D., Davis, T.N., et al., Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast, Genome Res., 2013, vol. 23, p. 1496. https://doi.org/10.1101/gr.155762.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orgogozo, V., Morizot, B., and Martin, A., The differential view of genotype–phenotype relationships, Front. Genet., 2015, vol. 6: 179. https://doi.org/10.3389/fgene.2015.00179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lobos, G.A., Camargo, A.V., del Pozo, A., Araus, J.L., Ortiz, R., and Doonan, J.H., Editorial: plant phenotyping and phenomics for plant breeding, Front. Plant Sci., 2017, vol. 8, p. 2181. https://doi.org/10.3389/fpls.2017.02181

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gerlai, R., Phenomics: fiction or the future? Trends Neurosci., 2002, vol. 25, p. 506. https://doi.org/10.1016/S0166-2236(02)02250-6

    Article  PubMed  Google Scholar 

  15. Deans, A.R., Lewis, S.E., Huala, E., Anzaldo, S.S., Ashburner, M., Balhoff, J.P., Blackburn, D.C., Blake, J.A., Burleigh, J.G., Chanet, B., Cooper, L.D., Courtot, M., Csösz, S., Cui, H., Dahdul, W., et al., Finding our way through phenotypes, PLoS Biol., 2015, vol. 13: e1002033. https://doi.org/10.1371/journal.pbio.1002033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kochinke, K., Zweier, C., Nijhof, B., Fenckova, M., Cizek, P., Honti, F., Keerthikumar, S., Oortveld, M.A.W., Kleefstra, T., Kramer, J.M., Webber, C., Huynen, M.A., and Schenck, A., Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules, Am. J. Hum. Genet., 2016, vol. 98, p. 149. https://doi.org/10.1016/j.ajhg.2015.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Awada, L., Phillips, P.W.B., and Smyth, S.J., The adoption of automated phenotyping by plant breeders, Euphytica, 2018, vol. 214: 148. https://doi.org/10.1007/s10681-018-2226-z

    Article  Google Scholar 

  18. Hay, F.R., Timple, S., and van Duijn, B., Can chlorophyll fluorescence be used to determine the optimal time to harvest rice seeds for long-term genebank storage? Seed Sci. Res., 2015, vol. 25, p. 321.

    Article  CAS  Google Scholar 

  19. Schnable, J.C. and Freeling, M., Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize, PLoS One, 2011, vol. 6: e17855. https://doi.org/10.1371/journal.pone.0017855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burleigh, J.G., Alphonse, K., Alverson, A.J., Bik, H.M., Blank, C., Cirranello, A.L., Cui, Y., Daly, M., Dietterich, T.G., Gasparich, G., Irvine, J., Julius, M., Kaufman, S., Law, E., Liu, J., et al., Next-generation phenomics for the tree of life, PLoS Curr., 2013, vol. 5. https://doi.org/10.1371/currents.tol.085c713acafc8711b2ff7010a4b03733

  21. Flood, P.J., Kruijer, W., Schnabel, S.K., van der Schoor, R., Jalink, H., Snel, J.F.H., Harbinson, J., and Aarts, M.G.M., Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability, Plant Methods, 2016, vol. 12: 14. https://doi.org/10.1186/s13007-016-0113-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henebry, G.M., Making sense of remotely sensing vegetation, BioScience, 2011, vol. 61, p. 568. https://doi.org/10.1525/bio.2011.61.7.13

    Article  Google Scholar 

  23. Thorp, K.R., Gore, M.A., Andrade-Sanchez, P., Carmo-Silva, A.E., Welch, S.M., White, J.W., and French, A.N., Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics, Comput. Electron. Agr., 2015, vol. 118, p. 225. https://doi.org/10.1016/j.compag.2015.09.005

    Article  Google Scholar 

  24. Hughes, N., Askew, K., Scotson, C.P., Williams, K., Sauze, C., Corke, F., Doonan, J.H., and Nibau, C., Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography, Plant Methods, 2017, vol. 13: 76. https://doi.org/10.1186/s13007-017-0229-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jones, H.G., Serraj, R., Loveys, B.R., Xiong, L., Wheaton, A., and Price, A.H., Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field, Funct. Plant Biol., 2009, vol. 36, p. 978. https://doi.org/10.1071/FP09123

    Article  Google Scholar 

  26. Warner, J.L., Denny, J.C., Kreda, D.A., and Alterovitz, G., Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization, J. Am. Med. Inform. Assoc., 2015, vol. 22, p. 324. https://doi.org/10.1136/amiajnl-2014-002965

    Article  PubMed  Google Scholar 

  27. Gago, J., Douthe, C., Coopman, R.E., Gallego, P.P., Ribas-Carbo, M., Flexas, J., Escalona, J., and Medrano, H., UAVs challenge to assess water stress for sustainable agriculture, Agric. Water Manag., 2015, vol. 153, p. 9. https://doi.org/10.1016/j.agwat.2015.01.020

    Article  Google Scholar 

  28. Ludovisi, R., Tauro, F., Salvati, R., Khoury, S., Mugnozza Scarascia, G., and Harfouche, A., UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought, Front. Plant Sci., 2017, vol. 8: 1681. https://doi.org/10.3389/fpls.2017.01681

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pereyra-Irujo, G.A., Gasco, E.D., Peirone, L.S., and Aguirrezábal, L.A.N., GlyPh: a low-cost platform for phenotyping plant growth and water use, Funct. Plant Biol., 2012, vol. 39, p. 905. https://doi.org/10.1071/FP12052

    Article  Google Scholar 

  30. Yang, W., Duan, L., Chen, G., Xiong, L., and Liu, Q., Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies, Curr. Opin. Plant Biol., 2013, vol. 16, p. 180. https://doi.org/10.1016/j.pbi.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  31. Paproki, A., Sirault, X., Berry, S., Furbank, R., and Fripp, J., A novel mesh processing based technique for 3D plant analysis, BMC Plant Biol., 2012, vol. 12: 63. https://doi.org/10.1186/1471-2229-12-63

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gandomi, A. and Haider, M., Beyond the hype: big data concepts, methods, and analytics, Int. J. Inf. Manage., 2015, vol. 35, p. 137. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

    Article  Google Scholar 

  33. Chen, M., Du, X., Zhu, Y., Wang, Z., Hua, S., Li, Z., Guo, W., Zhang, G., Peng, J., and Jiang, L., Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis,Plant Cell Environ., 2012, vol. 35, p. 2155. https://doi.org/10.1111/j.1365-3040.2012.02546.x

    Article  CAS  PubMed  Google Scholar 

  34. Granier, C. and Vile, D., Phenotyping and beyond: modelling the relationships between traits, Curr. Opin. Plant Biol., 2014, vol. 18, p. 96. https://doi.org/10.1016/j.pbi.2014.02.009

    Article  PubMed  Google Scholar 

  35. Fahlgren, N., Gehan, M.A., and Baxter, I., Lights, camera, action: high-throughput plant phenotyping is ready for a close-up, Curr. Opin. Plant Biol., 2015, vol. 24, p. 93. https://doi.org/10.1016/j.pbi.2015.02.006

    Article  PubMed  Google Scholar 

  36. Dutta, S., Cruz, J.A., Jiao, Y., Chen, J., Kramer, D.M., and Osteryoung, K.W., Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants, Plant J., 2015, vol. 84, p. 428. https://doi.org/10.1111/tpj.13009

    Article  CAS  PubMed  Google Scholar 

  37. Li, L., Zhang, Q., and Huang, D., A review of imaging techniques for plant phenotyping, Sensors (Basel), 2014, vol. 14, p. 20078. https://doi.org/10.3390/s141120078

    Article  PubMed  Google Scholar 

  38. Vanhaeren, H., Gonzalez, N., and Inzé, D., A journey through a leaf: phenomics analysis of leaf growth in Arabidopsis thaliana,Arabidopsis Book, 2015, vol. 13: e0181. https://doi.org/10.1199/tab.0181

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gregory, P.J., Bengough, A.G., Grinev, D., Schmidt, S., Thomas, W.B.T.B., Wojciechowski, T., and Young, I.M., Root phenomics of crops: opportunities and challenges, Funct. Plant Biol., 2009, vol. 36, p. 922. https://doi.org/10.1071/FP09150

    Article  Google Scholar 

  40. Plazas, M., Andújar, I., Vilanova, S., Gramazio, P., Herraiz, F.J., and Prohens, J., Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (So-lanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes, Front. Plant Sci., 2014, vol. 5: 318. https://doi.org/10.3389/fpls.2014.00318

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pound, M.P., French, A.P., Atkinson, J.A., Wells, D.M., Bennett, M.J., and Pridmore, T., RootNav: navigating images of complex root architectures, Plant Physiol., 2013, vol. 162, p. 1802. https://doi.org/10.1104/pp.113.221531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C.A., Topp, C.N., Iyer-Pascu-zzi, A.S., Zurek, P.R., Fang, S., Harer, J., Benfey, P.N., and Weitz, J.S., GiA Roots: software for the high throughput analysis of plant root system architecture, BMC Plant Biol., 2012, vol. 12: 116. https://doi.org/10.1186/1471-2229-12-116

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guan, Q., Wu, J., Yue, X., Zhang, Y., and Zhu, J., A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis,PLoS Genet., 2013, vol. 9: e1003755. https://doi.org/10.1371/journal.pgen.1003755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smolikova, G., Kreslavski, V., Shiroglazova, O., Bilova, T., Sharova, E., Frolov, A., and Medvedev, S., Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons, Funct. Plant Biol., 2018, vol. 45, p. 228. https://doi.org/10.1071/FP16379

    Article  CAS  PubMed  Google Scholar 

  45. Rolfe, S.A. and Scholes, J.D., Chlorophyll fluorescence imaging of plant–pathogen interactions, Protoplasm-a, 2010, vol. 247, p. 163. https://doi.org/10.1007/s00709-010-0203-z

    Article  CAS  Google Scholar 

  46. Arvidsson, S., Pérez-Rodríguez, P., and Mueller-Roeber, B., A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects, New Phytol., 2011, vol. 191, p. 895. https://doi.org/10.1111/j.1469-8137.2011.03756.x

    Article  PubMed  Google Scholar 

  47. Clark, R.T., MacCurdy, R.B., Jung, J.K., Shaff, J.E., McCouch, S.R., Aneshansley, D.J., and Kochian, L.V., Three-dimensional root phenotyping with a novel imaging and software platform, Plant Physiol., 2011, vol. 156, p. 455. https://doi.org/10.1104/pp.110.169102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Das, A., Schneider, H., Burridge, J., Ascanio, A.K.M., Wojciechowski, T., Topp, C.N., Lynch, J.P., Weitz, J.S., and Bucksch, A., Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics, Plant Methods, 2015, vol. 11: 51. https://doi.org/10.1186/s13007-015-0093-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Joosen, R.V.L., Arends, D., Willems, L.A.J., Ligterink, W., Jansen, R.C., and Hilhorst, H.W.M., Visualizing the genetic landscape of Arabidopsis seed performance, Plant Physiol., 2012, vol. 158, p. 570. https://doi.org/10.1104/pp.111.186676

    Article  CAS  PubMed  Google Scholar 

  50. Tanabata, T., Shibaya, T., Hori, K., Ebana, K., and Yano, M., SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis, Plant Physiol., 2012, vol. 160, p. 1871. https://doi.org/10.1104/pp.112.205120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schöler, F. and Steinhage, V., Automated 3D reconstruction of grape cluster architecture from sensor data for efficient phenotyping, Comput. Electron. Agric., 2015, vol. 114, p. 163. https://doi.org/10.1016/j.compag.2015.04.001

  52. Perez-Sanz, F., Navarro, P.J., and Egea-Cortines, M., Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms, Gig-ascience, 2017, vol. 6, p. 1. https://doi.org/10.1093/gigascience/gix092

    Article  Google Scholar 

  53. Zhang, J., Naik, H.S., Assefa, T., Sarkar, S., Reddy, R.V.C., Singh, A., Ganapathysubramanian, B., and Singh, A.K., Computer vision and machine learning for robust phenotyping in genome-wide studies, Sci. Rep., 2017, vol. 7: 44048. https://doi.org/10.1038/srep44048

    Article  PubMed  PubMed Central  Google Scholar 

  54. Czedik-Eysenberg, A., Seitner, S., Güldener, U., Koemeda, S., Jez, J., Colombini, M., and Djamei, A., The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution, New Phytol., 2018, vol. 219, p. 808. https://doi.org/10.1111/nph.15129

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sandhu, D., Coleman, Z., Atkinson, T., Rai, K.M., and Mendu, V., Genetics and physiology of the nuclearly inherited yellow foliar mutants in soybean, Front. Plant Sci., 2018, vol. 9: 471. https://doi.org/10.3389/fpls.2018.00471

    Article  PubMed  PubMed Central  Google Scholar 

  56. Coneva, V., Frank, M., de Luis Balaguer, M.A., Li, M., Sozzani, R., and Chitwood, D.H., Genetic architecture and molecular networks underlying leaf thickness in desert-adapted tomato, Plant Physiol., 2017, vol. 175, p. 376. https://doi.org/10.1104/pp.17.00790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weber, J.F., Kunz, C., Peteinatos, G.G., Santel, H.-J., and Gerhards, R., Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean, Weed Technol., 2017, vol. 31, p. 523. https://doi.org/10.1017/wet.2017.22

    Article  Google Scholar 

  58. Van de Velde, K., Chandler, P.M., van der Straeten, D., and Rohde, A., Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy, J. Exp. Bot., 2017, vol. 68, p. 443. https://doi.org/10.1093/jxb/erw471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cabrera-Bosquet, L., Fournier, C., Brichet, N., Welcker, C., Suard, B., and Tardieu, F., High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform, New Phytol., 2016, vol. 212, p. 269. https://doi.org/10.1111/nph.14027

    Article  CAS  PubMed  Google Scholar 

  60. Cendrero-Mateo, M.P., Muller, O., Albrecht, H., Burkart, A., Gatzke, S., Janssen, B., Keller, B., Körber, N., Kraska, T., Matsubara, S., Li, J., Müller-Linow, M., Pieruschka, R., Pinto, F., Rischbeck, P., et al., Field phenotyping: challenges and opportunities, in Terrestrial Ecosystem Research Infrastructures, Chabbi, A. and Loescher, H.W., Eds., Boca Raton: CRC, 2017, p. 53.

  61. Puglielli, G., Redondo-Gómez, S., Gratani, L., and Mateos-Naranjo, E., Highlighting the differential role of leaf paraheliotropism in two Mediterranean Cistus species under drought stress and well-watered conditions, J. Plant Physiol., 2017, vol. 213, p. 199. https://doi.org/10.1016/j.jplph.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  62. Mishra, A., Heyer, A.G., and Mishra, K.B., Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions, Plant Methods, 2014, vol. 10: 38. https://doi.org/10.1186/1746-4811-10-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kämäräinen, J., Huokko, T., Kreula, S., Jones, P.R., Aro, E.-M., and Kallio, P., Pyridine nucleotide transhydrogenase PntAB is essential for optimal growth and photosynthetic integrity under low-light mixotrophic conditions in Synechocystis sp. PCC 6803, New Phytol., 2017, vol. 214, p. 194. https://doi.org/10.1111/nph.14353

  64. Ferroni, L., Suorsa, M., Aro, E., Baldisserotto, C., and Pancaldi, S., Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems, New Phytol., 2016, vol. 211, p. 554. https://doi.org/10.1111/nph.13939

    Article  CAS  PubMed  Google Scholar 

  65. Humplík, J.F., Lazár, D., Fürst, T., Husičková, A., Hýbl, M., and Spíchal, L., Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.), Plant Methods, 2015, vol. 11: 20. https://doi.org/10.1186/s13007-015-0063-9

  66. Straka, L. and Rittmann, B.E., Growth kinetics and mathematical modeling of Synechocystis sp. PCC 6803 under flashing light, Biotechnol. Bioeng., 2018, vol. 116, p. 469. https://doi.org/10.1002/bit.26862

    Article  CAS  PubMed  Google Scholar 

  67. Belgio, E., Trsková, E., Kotabová, E., Ewe, D., Prášil, O., and Kaňa, R., High light acclimation of Chromera velia points to photoprotective NPQ, Photosy-nth. Res., 2018, vol. 135, p. 263. https://doi.org/10.1007/s11120-017-0385-8

    Article  CAS  Google Scholar 

  68. Skirycz, A., Vandenbroucke, K., Clauw, P., Maleux, K., de Meyer, B., Dhondt, S., Pucci, A., Gonzalez, N., Hoeberichts, F., Tognetti, V.B., Galbiati, M., Tonelli, C., van Breusegem, F., Vuylsteke, M., and Inzé, D., Survival and growth of Arabidopsis plants given limited water are not equal, Nat. Biotechnol., 2011, vol. 29, p. 212. https://doi.org/10.1038/nbt.1800

    Article  CAS  PubMed  Google Scholar 

  69. Clauw, P., Coppens, F., de Beuf, K., Dhondt, S., van Daele, T., Maleux, K., Storme, V., Clement, L., Gonzalez, N., and Inzé, D., Leaf responses to mild drought stress in natural variants of Arabidopsis, Plant Physiol., 2015, vol. 167, p. 800. https://doi.org/10.1104/pp.114.254284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tisné, S., Serrand, Y., Bach, L., Gilbault, E., Ben Ameur, R., Balasse, H., Voisin, R., Bouchez, D., Durand-Tardif, M., Guerche, P., Chareyron, G., da Rugna, J., Camilleri, C., and Loudet, O., Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity, Plant J., 2013, vol. 74, p. 534. https://doi.org/10.1111/tpj.12131

  71. Manay, S., Cremers, D., Byung-Woo, Hong, Yezzi, A.J., and Soatto, S., Integral invariants for shape matching, IEEE Trans. Pattern Anal. Mach. Intell., 2006, vol. 28, p. 1602. https://doi.org/10.1109/TPAMI.2006.208

    Article  PubMed  Google Scholar 

  72. Bau, J. and Cardé, R.T., Simulation modeling to interpret the captures of moths in pheromone-baited traps used for surveillance of invasive species: the gypsy moth as a model case, J. Chem. Ecol., 2016, vol. 42, p. 877. https://doi.org/10.1007/s10886-016-0765-0

    Article  CAS  PubMed  Google Scholar 

  73. Chu, K.W., Lee, W.S., Cheng, C.Y., Huang, C.F., Zhao, F., Lee, L.S., Chen, Y.S., Lee, C.Y., and Tsai, M.J., Demonstration of lateral IGBTs in 4H-SiC, IEEE Electron Device Lett., 2013, vol. 34, p. 286. https://doi.org/10.1109/LED.2012.2230240

    Article  CAS  Google Scholar 

  74. Mirowski, P.W., LeCun, Y., Madhavan, D., and Kuzniecky, R., Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG, IEEE Int. Workshop Mach. Learn. Signal Process., 2008, p. 244.

  75. Wiederschain, G.Y., Data mining techniques for the life sciences, Biochemistry, 2011, vol. 76, p. 494. https://doi.org/10.1134/S0006297911040158

    Article  CAS  Google Scholar 

  76. Yip, K.Y., Cheng, C., and Gerstein, M., Machine learning and genome annotation: a match meant to be? Genome Biol., 2013, vol. 14: 205. https://doi.org/10.1186/gb-2013-14-5-205

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sommer, C. and Gerlich, D.W., Machine learning in cell biology—teaching computers to recognize phenotypes, J. Cell Sci., 2013, vol. 126, p. 5529. https://doi.org/10.1242/jcs.123604

    Article  CAS  PubMed  Google Scholar 

  78. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V., Gene selection for cancer classification using support vector machines, Mach. Learn., 2002, vol. 46, p. 389. https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  79. Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., and Davatzikos, C., Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme, Magn. Reson. Med., 2009, vol. 62, p. 1609. https://doi.org/10.1002/mrm.22147

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gehan, M.A., Fahlgren, N., Abbasi, A., Berry, J.C., Callen, S.T., Chavez, L., Doust, A.N., Feldman, M.J., Gilbert, K.B., Hodge, J.G., Hoyer, J.S., Lin, A., Liu, S., Lizárraga, C., Lorence, A., et al., PlantCV v2: image analysis software for high-throughput plant phenotyping, PeerJ., 2017, vol. 5: e4088. https://doi.org/10.7717/peerj.4088

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gutiérrez, S., Fernández-Novales, J., Diago, M.P., and Tardaguila, J., On-the-go hyperspectral imaging under field conditions and machine learning for the classification of grapevine varieties, Front. Plant Sci., 2018, vol. 9: 1102. https://doi.org/10.3389/fpls.2018.01102

  82. Cai, Z., Fan, Q., Feris, R.S., and Vasconcelos, N., A unified multi-scale deep convolutional neural network for fast object detection, Lecture Notes in Computer Scien-ce, 2016, p. 354.

  83. El-Bendary, N., El Hariri, E., Hassanien, A.E., and Badr, A., Using machine learning techniques for evaluating tomato ripeness, Expert Syst. Appl., 2015, vol. 42, p. 1892. https://doi.org/10.1016/j.eswa.2014.09.057

    Article  Google Scholar 

  84. Ubbens, J., Cieslak, M., Prusinkiewicz, P., and Stavness, I., The use of plant models in deep learning: an application to leaf counting in rosette plants, Plant Methods, 2018, vol. 14: 6. https://doi.org/10.1186/s13007-018-0273-z

    Article  PubMed  PubMed Central  Google Scholar 

  85. Taghavi Namin, S., Esmaeilzadeh, M., Najafi, M., Brown, T.B., and Borevitz, J.O., Deep phenotyping: deep learning for temporal phenotype/genotype classification, Plant Methods, 2018, vol. 14: 66. https://doi.org/10.1186/s13007-018-0333-4

    Article  PubMed  PubMed Central  Google Scholar 

  86. De Chant, C., Wiesner-Hanks, T., Chen, S., Stewart, E.L., Yosinski, J., Gore, M.A., Nelson, R.J., and Lipson, H., Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning, Phytopathology, 2017, vol. 107, p. 1426. https://doi.org/10.1094/PHYTO-11-16-0417-R

    Article  Google Scholar 

  87. Xiong, X., Duan, L., Liu, L., Tu, H., Yang, P., Wu, D., Chen, G., Xiong, L., Yang, W., and Liu, Q., Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization, Plant Methods, 2017, vol. 13: 104. https://doi.org/10.1186/s13007-017-0254-7

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jin, S., Su, Y., Gao, S., Wu, F., Hu, T., Liu, J., Li, W., Wang, D., Chen, S., Jiang, Y., Pang, S., and Guo, Q., Deep learning: individual maize segmentation from terrestrial Lidar data using faster R-CNN and regional growth algorithms, Front. Plant Sci., 2018, vol. 9: 866. https://doi.org/10.3389/fpls.2018.00866

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bai, G., Jenkins, S., Yuan, W., Graef, G.L., and Ge, Y., Field-based scoring of soybean iron deficiency chlorosis using RGB imaging and statistical learning, Front. Plant Sci., 2018, vol. 9: 1002. https://doi.org/10.3389/fpls.2018.01002

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xu, R., Li, C., Paterson, A.H., Jiang, Y., Sun, S., and Robertson, J.S., Aerial images and convolutional neural network for cotton bloom detection, Front. Plant Sci., 2018, vol. 8: 2235. https://doi.org/10.3389/fpls.2017.02235

    Article  PubMed  PubMed Central  Google Scholar 

  91. Grift, T.E., Novais, J., and Bohn, M., High-throughput phenotyping technology for maize roots, Biosyst. Eng., 2011, vol. 110, p. 40. https://doi.org/10.1016/j.biosystemseng.2011.06.004

    Article  Google Scholar 

  92. Schnaubelt, D., Schulz, P., Hannah, M.A., Yocgo, R.E., and Foyer, C.H., A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana,Front. Plant Sci., 2013, vol. 4: 416. https://doi.org/10.3389/fpls.2013.00416

    Article  PubMed  PubMed Central  Google Scholar 

  93. Weraduwage, S.M., Chen, J., Anozie, F.C., Morales, A., Weise, S.E., and Sharkey, T.D., The relationship between leaf area growth and biomass accumulation in Arabi-dopsis thaliana,Front. Plant Sci., 2015, vol. 6: 167. https://doi.org/10.3389/fpls.2015.00167

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chopin, J., Laga, H., Huang, C.Y., Heuer, S., and Miklavcic, S.J., RootAnalyzer: a cross-section image analysis tool for automated characterization of root cells and tissues, PLoS One, 2015, vol. 10: e0137655. https://doi.org/10.1371/journal.pone.0137655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Montenegro-Johnson, T.D., Stamm, P., Strauss, S., Topham, A.T., Tsagris, M., Wood, A.T.A., Smith, R.S., and Bassel, G.W., Digital single-cell analysis of plant organ development using 3DCellAtlas, Plant Cell, 2015, vol. 27, p. 1018. https://doi.org/10.1105/tpc.15.00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duan, L., Yang, W., Huang, C., and Liu, Q., A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice, Plant Methods, 2011, vol. 7: 44. https://doi.org/10.1186/1746-4811-7-44

    Article  PubMed  PubMed Central  Google Scholar 

  97. Aquino, A., Millan, B., Gaston, D., Diago, M.-P., and Tardaguila, J., vitisFlower®: development and testing of a novel android-smartphone application for assessing the number of grapevine flowers per inflorescence using artificial vision techniques, Sensors (Basel), 2015, vol. 15, p. 21204. https://doi.org/10.3390/s150921204

    Article  PubMed  Google Scholar 

  98. Virlet, N., Costes, E., Martinez, S., Kelner, J.-J., and Regnard, J.-L., Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit, J. Exp. Bot., 2015, vol. 66, p. 5453. https://doi.org/10.1093/jxb/erv355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Golzarian, M.R., Frick, R.A., Rajendran, K., Berger, B., Roy, S., Tester, M., and Lun, D.S., Accurate inference of shoot biomass from high-throughput images of cereal plants, Plant Methods, 2011, vol. 7: 2. https://doi.org/10.1186/1746-4811-7-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fujita, S., Matsuo, T., Ishiura, M., and Kikkawa, M., High-throughput phenotyping of chlamydomonas swimming mutants based on nanoscale video analysis, Biophys. J., 2014, vol. 107, p. 336. https://doi.org/10.1016/j.bpj.2014.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the State Committee on Science and Technology of Belarus under the State Program “High Technologies and Technics” as well as joint projects with the Ministry of Science and Technology of China (project no. CB02-07), the Department of Science and Technology of Gaundong Province (project no. 2018YFD0201203), and the International Base Guangdong Science and Technology (project no. 163-2018-XMZC-0001-05-0049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Demidchik.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans and animals as research objects.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Shulskaya

Abbreviations: ERT—Electrical Resistance Tomography; ESMI, EMI—Electromagnetic Soil Inductance; GPR—Ground Penetrating Radar; PSI—Photon Systems Instruments; RGB-sensors—Red, Green, Blue-sensors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidchik, V.V., Shashko, A.Y., Bandarenka, U.Y. et al. Plant Phenomics: Fundamental Bases, Software and Hardware Platforms, and Machine Learning. Russ J Plant Physiol 67, 397–412 (2020). https://doi.org/10.1134/S1021443720030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720030061

Keywords:

Navigation