Skip to main content
Log in

Effects of Exogenous Soybean Isoflavones on Physiological Parameters of Achyranthes bidentata Blume Seedlings under UV-B Radiation Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In this study, effects of soy isoflavones (SIF) on the growth and development, physiology, content of medicinal ingredients and expression levels of enzyme-encoding genes in Achyranthes bidentata Blume under UV-B radiation were systematically investigated. The results showed that UV-B radiation adversely affected the growth and development of A. bidentata seedlings, causing ROS accumulation and the anti-oxidation system to be damaged. However, 1 mg/L exogenous SIF treatment conferred enhanced tolerance under UV-B radiation stress in A. bidentata seedlings by decreasing the concentration of MDA, H2O2, and modulating SOD and POD activities. Furthermore, 1 mg/L SIF reduced the content of oleanolic acid and ecdysterone in leaves and increased the content of oleanolic acid in roots, but had no significant effect on the content of ecdysterone in roots under UV-B radiation stress. SIF had a different degree of influence on the expression levels of antioxidant enzyme genes as well as medicinal ingredients enzyme-encoding genes in A. bidentata. The results showed that 1 mg/L exogenous SIF treatment had a positive effect on the growth, development and physiology in A. bidentata seedlings under UV-B radiation stress. To our knowledge, for the first time we are reporting that the use of 1 mg/L exogenous SIF enhances A. bidentata seedlings tolerance to UV-B radiation stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Wargent, J.J. and Jordan, B.R., From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production, New Phytol., 2013, vol. 197, p. 1058.

    Article  CAS  Google Scholar 

  2. Li, X.Y., Ma, M.H., Shao, W.X., Wang, H.T., Fan, R.X., Chen, X.H., Wang, X.G., Zhan, Y.G., and Zeng, F.S., Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response, Plant Sci., 2018, vol. 274, p. 294.

    Article  CAS  Google Scholar 

  3. Ma, M., Wang, P., Yang, R.Q., and Gu, Z.X., Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: physiological-biochemical change of germinated soybean induced by UV-B, Food Chem., 2018, vol. 250, p. 259.

    Article  CAS  Google Scholar 

  4. Rodríguez-Calzada, T., Qian, M.J., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I., and Guevara-González, R.G., Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.), Plant Physiol. Biochem., 2018, vol. 134, p. 94.

  5. Chen, J., Zhang, M.C., Eneji, A.E., and Li, J.M., Influence of exogenous silicon on UV-B radiation-induced cyclobutane pyrimidine dimmers in soybean leaves and its alleviation mechanism, J. Plant Physiol., 2016, vols. 196–197, p. 20.

  6. Kim, S., Yun, E.J., Hossain, M.A., Lee, H., and Kim, K.H., Global profiling of ultraviolet-induced metabolic disruption in Melissa officinalis by using gas chromatography-mass spectrometry, Anal. Bioanal. Chem., 2012, vol. 404, p. 553.

    Article  CAS  Google Scholar 

  7. Manukyan, A., Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions, Photochem. Photobiol., 2013, vol. 89, p. 406.

    Article  CAS  Google Scholar 

  8. Li, Q., Yu, H.M., Meng, X.F., Lin, J.S., Li, Y.J., and Hou, B.K., Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis, Plant Biol., 2017, vol. 20, p. 10.

    Article  CAS  Google Scholar 

  9. Pourcel, L., Routaboul, J.M., Cheynier, V., Lepiniec, L., and Debeaujon, I., Flavonoid oxidation in plants: from biochemical properties to physiological functions, Trends Plant Sci., 2007, vol. 12, p. 29.

    Article  CAS  Google Scholar 

  10. Mirahmadi, S.M.S., Shahmohammadi, A., Rousta, A.M., Azadi, M.R., Fahanik-Babaei, J., Baluchnejadmojarad, T., and Roghani, M., Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects, Cytokine, 2017, vol. 104, p. 151.

    Article  CAS  Google Scholar 

  11. Ghassemirad, J., Maleki, M., Knickle, A.F., and Hoskin, D.W., Myricetin-induced oxidative stress suppresses murine T lymphocyte activation, Cell Biol. Int., 2018, vol. 42, p. 1069.

    Article  CAS  Google Scholar 

  12. Nakabayashi, R. and Saito, K., Integrated metabolomics for abiotic stress responses in plants, Curr. Opin. Plant Biol., 2015, vol. 24, p. 10.

    Article  CAS  Google Scholar 

  13. Li, J.T., Han, X.P., Wang, C., Qi, W.Z., Zhang, W.Y., Tang, L., and Zhao, X.T., Validation of suitable reference genes for RT-qPCR data in Achyranthes bidentata Blume under different experimental conditions, Front. Plant Sci., 2017, vol. 8: 776.

    Article  CAS  Google Scholar 

  14. Tamogami, S., Noge, K., Agrawal, G.K., and Rakwa, R., Methyl jasmonate elicits the production of methyl (E)-2-hexenoate from (Z)-2-hexenol via (Z)-2-hexenal in Achyranthes bidentata plant, FEBS Lett., 2015, vol. 589, p. 390.

    Article  CAS  Google Scholar 

  15. Jiang, Z., Qian, J., Dong, H.Y., Yang, J.G., Yu, X.B., Chen, J.Z., Chen, H.N., Shi, Q., and Jia, L., The traditional Chinese medicine Achyranthes bidentata and our de novo conception of its metastatic chemoprevention: from phytochemistry to pharmacology, Sci. Rep., 2017, vol. 7: 3888.

    Article  CAS  Google Scholar 

  16. Li, J.T. and Hu, Z.H., Accumulation and dynamic trends of triterpenoid saponin in vegetative organs of Achyranthus bidentata,J. Integr. Plant Biol., 2009, vol. 51, p. 8.

    Google Scholar 

  17. Qiu, Z.B., Li, J.T., and Ming, Y., The damage repair role of He-Ne laser on wheat exposed to osmotic stress, Can. J. Plant Sci., 2010, vol. 90, p. 691.

    Article  CAS  Google Scholar 

  18. Zhou, T.J., Meng, C.Z., and He, P.L., Soy isoflavones and their effects on xenobiotic metabolism, Curr. Drug Metab., 2019, vol. 20, p. 46.

    Article  CAS  Google Scholar 

  19. Li, Y.F., Gao, L.M., and Han, R., A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress, Environ. Sci. Pollut. Res., 2016, vol. 23, p. 23675.

    Article  CAS  Google Scholar 

  20. Gao, L.M., Li, Y.F., and Han, R., He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions, Protoplasma, 2015, vol. 252, p. 1135.

    Article  CAS  Google Scholar 

  21. Sankari, M., Hridya, H., Sneha, P., George, P.D.C., and Ramamoorthy, S., Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L., J. Photochem. Photobiol. B, 2017, vol. 176, p. 136.

    Article  CAS  Google Scholar 

  22. Izbiańska, K., Arasimowicz-Jelonek, M., and Deckert, J., Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress, Ecotox. Environ. Safe., 2014, vol. 110, p. 61.

  23. Zhang, X.X., Tang, X.X., Zhou, B., Hu, S.X., and Wang, Y., Effect of enhanced UV-B radiation on photosynthetic characteristics of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae), J. Exp. Mar. Biol. Ecol., 2015, vol. 469, p. 27.

    Article  CAS  Google Scholar 

  24. Pandey, N. and Pandeyrai, S., Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L., Plant Cell Tiss.Org., 2014, vol. 116, p. 371.

    CAS  Google Scholar 

  25. Zhou, L.Y., Yang, G., Sun, H.F., Tang, J.F., Yang, J., Wang, Y.Z., Garran, T.A., and Guo, L.P., Effects of different doses of cadmium on secondary metabolites and gene expression in Artemisia annua L., Front. Med., 2017, vol. 11, p. 137.

    Article  Google Scholar 

  26. Rai, R., Meena, R.P., Smita, S.S., Shukla, A., Rai, S.K., and Pandey-Rai, S., UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.—an antimalarial plant, J. Photochem. Photobiol. B, 2011, vol. 105, p. 216.

    Article  CAS  Google Scholar 

  27. Qi, Q., Li, R., Gai, Y., and Jiang, X.N., Cloning and functional identification of farnesyl diphosphate synthase from Pinus massoniana Lamb, J. Plant Biochem. Biotechnol., 2017, vol. 26, p. 132.

    Article  CAS  Google Scholar 

  28. Jiang, D., Rong, Q.X., Chen, Y.J., Yuan, Q.J., Shen, Y., Guo, J., Yang, Y.R., Zha, L.P., Wu, H.X., Huang, L.Q., and Liu, C.S., Molecular cloning and functional analysis of squalene synthase (SS) in Panax notoginseng,Int. J. Biol. Macromol., 2016, vol. 95, p. 658.

    Article  CAS  Google Scholar 

  29. Zhang, D.H., Jiang, L.X., Li, N., Yu, X.Y., Zhao, P., Li, T., and Xu, J.W., Overexpression of the squalene epoxidase gene alone and in combination with the 3-hydroxy-3-methylglutaryl coenzyme A gene increases ganoderic acid production in Ganoderma lingzhi,J. Agr. Food Chem., 2017, vol. 65, p. 4683.

    Article  CAS  Google Scholar 

  30. Phillips, D.R., Rasbery, J.M., Bartel, B., and Matsuda, S.P.T., Biosynthetic diversity in plant triterpene cyclization, Curr. Opin. Plant Biol., 2006, vol. 9, p. 305.

    Article  CAS  Google Scholar 

Download references

Funding

We thank the National Nature Science Foundation of China (81274076) and the Key Projects of Henan Province Colleges and Universities (17A180026) for financial support of the project, in the framework of which this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: CAS—cycloartenol synthase; CAT—catalase; FPS—farnesyl pyrophosphate synthase; MDA—malondialdehyde; OA—oleanolic acid; PBS—sodium phosphate buffer; POD—peroxidase; qRT-PCR—quantitative real-time PCR; SE—squalene oxidase; SIF—soy isoflavones; SNP—sodium nitroprusside; SOD—superoxide dismutase; SS—squalene synthase; TBA—thiobarbituric acid; TCA—trichloroacetic acid; β‑AS—β-amyrin synthase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Liu, Y., Han, S. et al. Effects of Exogenous Soybean Isoflavones on Physiological Parameters of Achyranthes bidentata Blume Seedlings under UV-B Radiation Stress. Russ J Plant Physiol 67, 960–970 (2020). https://doi.org/10.1134/S1021443720050179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720050179

Keywords:

Navigation