Skip to main content
Log in

Electrochemical Synthesis of Multilayer Graphene Oxide by Anodic Oxidation of Disperse Graphite

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical method for synthesizing multilayer graphene oxide by the anodic oxidation of disperse graphite in sulfuric acid is proposed. The possibility of sequential dispersion of graphite in the course of its electrochemical oxidation, hydrolysis, and thermolysis is demonstrated. It is shown that the resulting nanostructured materials tend to form agglomerates in aqueous dispersions. When treated with supersonic, the size of oxidized graphite particles decreases noticeably and they form multilayer graphene oxide. Thermolysis (250°С) leads to a considerable expansion of oxidized graphite particles (the inflation coefficient 1490 cm3 g–1) and reduction of oxygen-containing functional groups. The structure of thus obtained material includes polygraphene sheets with the thickness of 0.01–0.1 µm and contains pores of 1–10 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Gubin S.P. and Tkachev S.V., Grafen i rodstvennye nanoformy ugleroda [Graphene and Related Carbon Nanoforms], Moscow: Knizhnyi dom “LIBROKOM,” 2012.

  2. Graphene—Synthesis, Characterization, Properties and Applications, Gong, J.R. (Ed.), Rijeeka (Croatia): InTech., 2011, p. 184.

  3. Tkachev, S.V., Buslaeva, E.Yu., and Gubin, S.P., Graphene: A novel carbon nanomaterial, Inorg. Mater., 2011, vol. 47 (1), p. 1.

    Article  CAS  Google Scholar 

  4. Tian, L., Wang, X., Cao, L., Meziani, M.J., Kong, C.Y., Lu, F., and Sun, Y.-P., Preparation of bulk 13C-enriched graphene materials, J. Nanomater., 2010, Special Issue on Graphene, Art. ID 742167, p. 5.

  5. Edwards, R.S. and Coleman, K.S., Graphene synthesis: relationship to applications, Nanoscale, 2013, vol. 5, p. 38.

    Article  CAS  Google Scholar 

  6. Revo, S.L., Budzulyak, I.M., Rachiy, B.I., and Kuzi-shin, M.M., Electrode material for supercapacitors based on nanostructured carbon, Surf. Eng. Appl. Electrochem., 2013, vol. 49, p. 68.

    Article  Google Scholar 

  7. Kulkarni, G.S., Reddy, K., Zhong, Z., and Fan, X., Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection, Nat. Commun., 2014, no. 5, p. 1.

  8. Avouris, P. and Dimitrakopoulos, C., Graphene: synthesis and applications, Mater. Today, 2012, vol. 15, p. 86.

    Article  CAS  Google Scholar 

  9. Li, F., Jiang, X., Zhao, J., and Zhang, S., Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy, 2015, no. 16, p. 488.

  10. Yang, S., Lohe, M.R., Müllen, K., and Feng, X., New-generation graphene from electrochemical approaches: Production and applications, Adv. Mater., 2016, vol. 28, p. 6213.

    Article  CAS  Google Scholar 

  11. Novoselov, K.S. Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Electric field effect in atomically thin carbon films, Science, 2004, vol. 306, no. 5696, p. 666.

    Article  CAS  Google Scholar 

  12. Yang, W., Chen, G., Shi, Z., Liu, C.-C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., Watanabe, K., Taniguchi, T., Yao, Y., Zhang, Y., and Zhang, G., Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 2013, vol. 12, p. 792.

    Article  CAS  Google Scholar 

  13. Zhang, X., L. Wang, J. Xin, B. I. Yakobson, F., and Ding, J., Role of hydrogen in graphene chemical vapor deposition growth on a copper surface, J. Am. Chem. Soc., 2014, vol. 136, p. 3040.

    Article  CAS  Google Scholar 

  14. Yan, Z., Peng, Z., and Tour, J.M., Chemical vapor deposition of graphene single crystals, Acc. Chem. Res., 2014, vol. 47 (4), p. 1327.

    Article  CAS  Google Scholar 

  15. Ioni, Y.V., Tkachev, S.V., Bulychev, N.A., and Gubin, S.P., Preparation of finely dispersed nanographite, Inorg. Mater., 2011, vol. 47 (6), p. 597.

    Article  CAS  Google Scholar 

  16. Hammers, W.S. and Offman, R.E. Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80 (6), p. 1339.

    Article  Google Scholar 

  17. Dreyer, D.R., Jia, H.P., and Bielawski, C.W., Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions, Angew. Chem., Int. Ed., 2010, vol. 49 (38), p. 6813.

    CAS  Google Scholar 

  18. Li, Q., Guo, X., Zhang, Y., Zhang, W., Ge, C., Zhao, L., Wang, X., Zhang, H., Chen, J., Wang, Z., and Sun, L., Porous graphene paper for supercapacitor applications, J. Mater. Sci. Technol., 2017, vol. 33, p. 793.

    Article  Google Scholar 

  19. Zaaba, N.I., Foo, K.L., Hashima, U., Tanb, S.J., Liu, W.-W., and Voon, C.H., Synthesis of graphene oxide using modified Hummers method: Solvent influence, Procedia Eng., 2017, vol. 184, p. 469.

    Article  CAS  Google Scholar 

  20. Aleksenskii, A.E., Brunkov, P.N., Dideikin, A.T., Kirilenko, D.A., Kudashova, Y.V., Sakseev, D.A., Sevryuk, V.A., and Shestakov, M.S., Single-layer graphene oxide films on a silicon surface, Technical Physics, Russ.J. Appl. Phys., 2013, vol. 58 (11), p. 1614.

    CAS  Google Scholar 

  21. Babaev, A.A., Zobov, M.E., Kornilov, D.Y., Tkachev, S.V., Terukov, E.I., and Levitskii, V.S., Optical and electrical properties of graphene oxide, Opt. Spektrosk., 2018, vol. 125 (6), p. 820.

    Google Scholar 

  22. Tkachev, S.V., Buslaev, E.Y., Laure, I.V., Gubin, S.P., Naumkin, A.V., and Kotova, S.L., Reduced graphene oxide, Inorg. Mater., 2012, vol. 48 (8), p. 796.

    Article  CAS  Google Scholar 

  23. Hou, D., Liu, Q., Wang, X., Quan, Y., Qiao, Z., Yu, L., and Ding, S., Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol, J. Mater., 2018, vol. 4, p. 256.

    Google Scholar 

  24. Wang, J., Salihi, E.C., and Šiller, L., Green reduction of graphene oxide using alanine, Mater. Sci. Eng., 2017, vol. 72, p. 721.

    Google Scholar 

  25. Ghorbani, M., Abdizadeh, H., and Golobostanfard, M.R., Reduction of graphene oxide via modified hydrothermal method, Procedia Mater. Sci., 2015, vol. 11, p. 326.

    Article  CAS  Google Scholar 

  26. Johnson, D.W., Dobson, B.P., and Coleman, K.S., A manufacturing perspective on graphene dispersions, Curr. Opin. Colloid Interface Sci., 2015, vol. 20, p. 367.

    Article  CAS  Google Scholar 

  27. Yakovlev, A.V., Finaenov, A.I., Zabud’kov, S.L., and Yakovleva, E.V., Thermally expanded graphite: Synthesis, properties, and prospects for use, Russ. J. Appl. Chem., 2006, vol. 79 (11), p. 1741.

    Article  CAS  Google Scholar 

  28. Yakovlev, A.V., Yakovleva, E.V., Zabud’kov S.L., and Finaenov, A.I., Electrochemical processes on graphite powder electrodes in HNO3 solutions, Russ. J. Appl. Chem., 2010, vol. 83 (5), p. 820.]

    Article  CAS  Google Scholar 

  29. Wang, P., Yao, T., Sun, B., Fan, X., Dong, S., Bai, Y., and Shi, Y., A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated grapheme, Colloids Surf. A, 2017, vol. 513, p. 396.

    Article  CAS  Google Scholar 

  30. Chen, K. and Xue, D., Preparation of colloidal graphene in quantity by electrochemical exfoliation, J. Colloid Interface Sci., 2014, vol. 436 (15), p. 41.

    Article  CAS  Google Scholar 

  31. Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., and Müllen, K., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts, J. Am. Chem. Soc., 2014, vol. 136 (16), p. 6083.

    Article  CAS  Google Scholar 

  32. Singh, R. and Tripathi, C.C., Synthesis of colloidal graphene by electrochemical exfoliation of graphite in lithium sulphate, Mater. Today: Proc., 2018, vol. 5 (1), p. 973.

    CAS  Google Scholar 

  33. Wang, H., Wei, C., Zhu, K., Zhang, Y., Gong, C., Guo, J., Zhang, J., Yu, L., and Zhang, J., Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 34456.

    Article  CAS  Google Scholar 

  34. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., Plasma-assisted electrochemical exfoliation of graphite in the pulsed mode, High Energy Chem., 2018, vol. 52 (3), p. 272.

    Article  CAS  Google Scholar 

  35. Lee, H., Bratescu, M.A., Ueno, T., and Saito, N., Solution plasma exfoliation of graphene flakes from graphite electrodes, RSC Adv., 2014, vol. 4 (93), p. 51758.

    Article  CAS  Google Scholar 

  36. Thanh, D.V., Li, L.-J., Chu, C.-W., Yena, P.-J., and Wei, K-H., Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets, RSC Adv., 2014, 4 (14), p. 6946.

    Article  CAS  Google Scholar 

  37. Resmia, P.E., Palaniayappanb, L., Ramachandrana, T., and Satheesh Babu, T.G., Electrochemical synthesis of graphene and its application in electrochemical sensing of glucose, Mater. Today: Proc., 2018, vol. 5 (8), p. 16487.

    Google Scholar 

  38. Yu, P., Lowe, S.E., Simon, G.P., and Zhong, Y.L., Electrochemical exfoliation of graphite and production of functional graphene, Curr. Opin. Colloid Interface Sci., 2015, vol. 20 (5–6), p. 329.

    Article  Google Scholar 

  39. Ju, H.-M., Choi, S.-H., and Huh, S.H., X-ray diffraction patterns of thermally-reduced graphenes, J. Korean Phys. Soc., 2010, vol. 57 (6), p. 1649.

    Article  CAS  Google Scholar 

  40. Pham, T.A., Kim, J.S., Kim, J.S., and Jeong, Y.T., One-step reduction of graphene oxide with L-glutathione, Colloids Surf. A, 2011, vol. 384 (1–3), p. 543.

    Article  CAS  Google Scholar 

  41. Gurunathan, S., Han, J., and Kim, J.H., Humanin: A novel functional molecule for the green synthesis of grapheme, Colloids Surf. B, 2013, vol. 111, p. 376.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-19048\18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yakovlev.

Ethics declarations

The authors state the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.V., Yakovleva, E.V., Tseluikin, V.N. et al. Electrochemical Synthesis of Multilayer Graphene Oxide by Anodic Oxidation of Disperse Graphite. Russ J Electrochem 55, 1196–1202 (2019). https://doi.org/10.1134/S102319351912019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351912019X

Keywords:

Navigation