Skip to main content
Log in

Synthesis and Investigation of Dilithium Salts of Polyhydroquinones with Azomethine Groups as the Cathodes for Lithium Organic Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The prototypes of lithium batteries with organic electrode materials based on two lithium salts of polyhydroquionones containing azomethine groups and, for a comparison, materials based on the original Schiff base are developed and characterized. Poly[3,6-bis(iminomethylphenylene-1,2-diol)dilithium] and poly[3-(iminomethyl)-6-methylimino-N-(1-phenyl-4-diyl)benzene-1,2-dioldilithium] are synthesized and studied for the first time. For these structures, quantum chemical simulations are carried out for calculating the energy of the addition of lithium atoms which can proceed either to the nitrogen atom of the azomethine group or to the oxygen atom of the carbonyl group. It is shown experimentally that the best capacity and stability characteristics are demonstrated by the polymer poly[3,6-bis(iminomethylphenylene-1,2-diol)dilithium with the initial capacity of 140 mA h/g in the cycling interval of 0.7–4.1 V vs. Li+/Li, which makes it a promising cathodic material for lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Akitt, J.W., Kaye, F.W., Lee, B.E., and North, A.M., Conjugated polymeric Schiff bases. Thermally stable polymers with low electrical resistivity, Makromol. Chem., 1962, vol. 56, p. 195.

    Article  CAS  Google Scholar 

  2. Li, X., Jiao, Y., and Li, S. The syntheses, properties and application of new conducting polymers, Eur. Polym. J., 1991, vol. 27, p. 1345.

    Article  CAS  Google Scholar 

  3. Popov, Yu.A., Davydov, B.E., Kubasova, N.A., Kren-tsel’, B.A., and Konstantinov, I.I., Synthesis and properties of polymeric Schiff bases, Vysokomol.Soedinen., 1965, vol. 7, p. 835.

    CAS  Google Scholar 

  4. Cianga, I. and Ivanoiu, M., Synthesis of poly(Schiff-base)s by organometallic processes, Eur. Polym. J., 2006, vol. 42, p. 1922.

    Article  CAS  Google Scholar 

  5. Kugler, T., Giguere, J.-B., Bourcet, F., and Toner, J., WO Patent 2018162890, 2018.

  6. Kugler, T., Giguere, J.-B., Toner, J., and Bourcet, F., GB Patent 2560348, 2018.

  7. Karushev, M.P., Belous, S.A., Lavrova, T.S., Chepurnaya, I.A., Timonov, A.M., and Kogan, S., WO Patent 2016044857, 2016.

  8. Karushev, M.P., Belous, S.A., Lavrova, T.S., Chepurnaya, I.A., Timonov, A.M., and Kogan, S., WO Patent 2016028589, 2016.

  9. Cheng, H., Sun, Y., Sun, Y., Pan, Q., and Sun, H., CN Patent 105261758, 2016.

  10. Ye, H., Jiang, F., Li, H., Xu, Z., Yin, J., and Zhu, H., Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries, Electrochim. Acta, 2017, vol. 253, p. 319.

    Article  CAS  Google Scholar 

  11. Sun, Y., Sun, Y., Pan, Q., Li, G., Han, B., Zeng, D., Zhang, Y., and Cheng, H., A hyperbranched conjugated Schiff base polymer network: a potential negative electrode for flexible thin film Batteries, Chem. Commun., 2016, vol. 52, p. 3000.

    Article  CAS  Google Scholar 

  12. Zhuang, X., Zhang, F., Wu, D., and Feng, X., Graphene coupled Schiff-base porous polymers: Towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity, Adv. Mater., 2014, vol. 26, p. 3081.

    Article  CAS  Google Scholar 

  13. Fernandez, N., Sanchez-Fontecoba, P., Castillo-Martinez, E., Carretero-Gonzalez, J., Rojo, T., and Armand, M., Polymeric redox-active electrodes for sodium-ion batteries, ChemSusChem, 2018, vol. 11, p. 311.

    Article  CAS  Google Scholar 

  14. Daigle, J.-C., Asakawa, Y., Hovington, P., Zaghib, K., Schiff base as additive for preventing gas evolution in Li4Ti5O12-based lithium-ion battery, ACS Appl. Mater. Interfaces, 2017, vol. 9(47), p. 41371.

    Article  CAS  Google Scholar 

  15. Levchenko, N.F., Afanasiadi, L.Sh., and Bezuglyi, V.D., The influence of the nature of the radicals associated with the azomethine group on its polarographic activity, Zh. Obshch. Khim.,1967, vol. 37, p. 666.

    CAS  Google Scholar 

  16. Kitaev, Yu.P. and Troepol′skaya, T.V., Polarographic reduction of azomethine compounds, in Progress in Electrochemistry of Organic Compounds. Vol. 1, Frumkin, A.N. and Ershler, A.B., Eds., London: Plenum, 1971, p. 43.

    Google Scholar 

  17. Lopez-Herraiz, M., Castillo-Martınez, E., Carretero-Gonzalez, J., Carrasco, J., Rojo, T., and Armand, M., Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers, Energy Environ. Sci., 2015, vol. 8, p. 3233.

    Article  CAS  Google Scholar 

  18. Xiao, Z., Han, J., Xiao, J., Song, Q., Zhang, X., Kong, D., Yang, Q.-H., and Zhi, L., A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance, Nanoscale, 2018, vol. 10, p. 10351.

    Article  CAS  Google Scholar 

  19. Castillo-Martinez, E., Carretero-Gonzalez, J., and Armand, M., Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries, Angew. Chem., 2014, vol. 53, p. 5341.

    Article  CAS  Google Scholar 

  20. Manecke, G., Wille, W.E., and Kossmehl, G., Preparation and properties of monomeric and polymeric Schiff bases derived from salicylaldehyde and 2,5-dihydroxyterephthalaldehyde. II. Electrical conductivity, Makromol. Chem., 1972, vol. 160, p. 111.

    Article  CAS  Google Scholar 

  21. Mo, Y.-P., Liu, X.-H., Sun, B., Yan, H.-J., Wang, D., and Wan, L.-J., The intramolecular H-bonding effect on the growth and stability of Schiff-base surface covalent organic frameworks, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 539.

    Article  CAS  Google Scholar 

  22. Jiang, J., Dong, R.Y., and MacLachlan, M.J., Lyotropic liquid crystallinity in mixed-tautomer Schiff-base macrocycles, Chem. Commun., 2015, vol. 51, p. 16205.

    Article  CAS  Google Scholar 

  23. Dunn, T.J., Ramogida, C.F., Simmonds, C., Paterson, A., Wong, E.W.Y., Chiang, L., Shimazaki, Y., and Storr, T., Non-innocent ligand behavior of a bimetallic Ni Schiff-base Complex containing a bridging catecholate, Inorg. Chem., 2011, vol. 50, p. 6746.

    Article  CAS  Google Scholar 

  24. Akine, S., Sunaga, S., and Nabeshima, T., Multistep oligometal complexation of the macrocyclic tris(N2O2) hexaoxime ligand, Chem. – Eur. J., 2011, vol. 17, p. 6853.

    Article  CAS  Google Scholar 

  25. Feltham, H.L.C., Clerac, R., Powell, A.K., and Brooker, S., A tetranuclear, macrocyclic 3d–4f complex showing single-molecule magnet behavior, Inorg. Chem., 2011, vol. 50, p. 4232.

    Article  CAS  Google Scholar 

  26. Yamamura, M., Sasaki., Kyotani, M., Orita, H., and Nabeshima, T., Self-assembled nanostructures of tailored multi-metal complexes and morphology control by counter-anion exchange, Chem. – Eur. J., 2010, vol. 16, p. 10638.

    Article  CAS  Google Scholar 

  27. Jiang, J. and MacLachlan, M.J., Unsymmetrical triangular Schiff base macrocycles with cone conformations, Org. Lett., 2010, vol. 12, p. 1020.

    Article  CAS  Google Scholar 

  28. Gallant, A.J., Yun, M., Sauer, M., Yeung, C.S., and MacLachlan, M.J., Tautomerization in naphthalenediimines: A keto-enamine Schiff base macrocycle, Org. Lett., 2005, vol. 7, p. 4827.

    Article  CAS  Google Scholar 

  29. Gallant, A.J. and MacLachlan, M.J., Ion-induced tubular assembly of conjugated Schiff-basemacrocycles, Angew. Chem. Int. Ed., 2003, vol. 42, p. 5307.

    Article  CAS  Google Scholar 

  30. Akine, S., Taniguchi, T., and Nabeshima, T., Helical metallohost—guest complexes, J. Am. Chem. Soc., 2006, vol. 128, p.15765.

    Article  CAS  Google Scholar 

  31. Perdew, P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  32. Stevens, W.J., Basch, H., and Krauss, M.J., Valence basis set for transition metals (available Li–Rn) with corresponding ECPs, J. Chem. Phys., 1984, vol. 81, p. 6026.

    Article  Google Scholar 

  33. Laikov, D.N., Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets, Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The quantum chemical simulations were carried out with the use of computers of the Joint Supercomputer Center of the Russian Academy of Sciences. We are grateful to S.Ya. Gadomskii for his help in the synthesis of (benzylidene)-p-phenylendiamine.

Funding

This study was carried out in accordance with the State Project no. 0089-2019-0010 (Institute of Problems of Chemical Physics, Russian Academy of Sciences) and was also supported by the Russian Scientific Foundation (grant no. 16-13-00111 (Skolkovo Institute of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yarmolenko.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare the absence of any conflict of interests.

ADDITIONAL INFORMATION

ORCID ID 0000-0001-8819-8960 Shestakov A.F.

ORCID ID 0000-0001-9957-4140 Troshin P.A.

ORCID ID 0000-0002-3088-8165 Yarmolenko O.V.

Additional information

Translated by T. Safonova

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, A.F., Yakushchenko, I.K., Slesarenko, A.A. et al. Synthesis and Investigation of Dilithium Salts of Polyhydroquinones with Azomethine Groups as the Cathodes for Lithium Organic Batteries. Russ J Electrochem 56, 310–320 (2020). https://doi.org/10.1134/S1023193520040126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040126

Keywords:

Navigation