Skip to main content
Log in

On the consideration of the averaged vertical wind in problems of stratospheric aerosol transport

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The influence of the averaged vertical wind on the transport of stratospheric aerosol has been analyzed with the use of the database of the GCM UKMO assimilated model for 1993–2006. With the problem regarding the action of a permanent source of particles near the stratopause taken as an example, it is shown that if the action of the averaged vertical component is taken into account along with the gravitational sedimentation and turbulent diffusion, the standard vertical profiles of the relative concentration of particles change cardinally. The results are presented for the levitation heights of particles of different densities and sizes in the stratosphere under the action of gravity and wind pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere, 3rd ed. (Springer, Dordrecht, 2005).

    Google Scholar 

  2. M. Gerding, G. Baumgarten, U. Blum, J. P. Thaye, K.-H. Fricke, R. Neuber, and J. Fiedler, “Observation of an Unusual Mid-Stratospheric Aerosol Layer in the Arctic: Possible Sources and Implications for Polar Vortex Dynamics,” Ann. Geophys. 21, 1057–1069 (2003).

    ADS  Google Scholar 

  3. H.-J. Jost, K. Drdla, A. Stohl, L. Pfister, M. Loewenstein, J. P. Lopez, P. K. Hudson, D. M. Murphy, D. J. Cziczo, M. Fromm, T. P. Bui, Dean-J. Day, C. Gerbig, M. J. Mahoney, E. C. Richard, N. Spichtinger, J. V. Pittman, E. M. Weinstock, J. C. Wilson, and I. Xueref, “In-Situ Observations of Mid-Latitude Forest Fire Plumes Deep in the Stratosphere,” Geophys. Res. Lett. 31, L11101 (2004), doi: 10.1029/2003GL019253.

    Article  ADS  Google Scholar 

  4. B. Kürcher, “Properties of Subvisible Cirrus Clouds Formed by Homogeneous Freezing,” Atmos. Chem. Phys. 2, 160–170 (2002).

    Google Scholar 

  5. B. P. Luo, Th. Peter, H. Wernli, S. Fueglistaler, M. Wirth, C. Kiemle, H. Flentje, V. A. Yushkov, V. Khattatov, V. Rudakov, A. Thomas, S. Borrmann, G. Toci, P. Mazzinghi, J. Beuermann, C. Schiller, F. Cairo, Di Don-G. Francesco, A. Adriani, C. M. Volk, J. Strom, K. Noone, V. Mitev, R. A. MacKenzie, K. S. Carslaw, T. Trautmann, V. Santacesaria, and L. Stefanutti, “Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization Mechanisms,” Atmos. Chem. Phys. 3, 1093–1100 (2003).

    Article  Google Scholar 

  6. J.-B. Renard, C. Brogniez, G. Berthet, Q. Bourgeois, B. Gaubicher, M. Chartier, J.-Y. Balois, C. Verwaerde, F. Auriol, P. Francois, D. Daugeron, and C. Engrand, “Vertical Distribution of the Different Types of Aerosols in the Stratosphere: Detection of Solid Particles and Analysis of Their Spatial Variability,” J. Geophys. Res. 113, D21303 (2008), Doi: 10.1029/2008JD010150.

    Article  ADS  Google Scholar 

  7. M. Wainwright, S. Alharbi, and N. C. Wickramasinghe, “How Do Microorganisms Reach the Stratosphere?” Int. J. Astrobiol. 5, 13–15 (2006).

    Article  Google Scholar 

  8. D. Koch and J. Hansen, “Distant Origins of Arctic Black Carbon: A Goddard Institute for Space Studies Model Experiment,” J. Geophys. Res. 110, D04204 (2005), doi: 10.1029/2004JD005296.

    Article  Google Scholar 

  9. D. W. Fahey, R. S. Gao, K. S. Carslaw, J. Kettleborough, P. J. Popp, M. J. Northway, J. C. Holecek, S. C. Ciciora, R. J. McLaughlin, T. L. Thompson, R. H. Winkler, D. G. Baumgardner, B. Gandrud, P. O. Wennberg, S. Dhaniyala, K. McKinney, Th. Peter, R. J. Salawitch, T. P. Bui, J. W. Elkins, C. R. Webster, E. L. Atlas, H. Jost, J. C. Wilson, R. L. Herman, A. Kleinbohl, and M. von Kohnig, “The Detection of Large HNO3-Containing Particles in the Winter Arctic Stratosphere,” Science 291(5506), 1026–1031 (2001).

    Article  ADS  Google Scholar 

  10. S. A. Beresnev and V. I. Gryazin, “Vertical Wind Transfer of Aerosols in Stratosphere,” Atmos. Oceanic Opt. 20, 537–543 (2007).

    Google Scholar 

  11. S. A. Beresnev, V. I. Gryazin, and K. G. Gribanov, “Climatology of Vertical Wind in Middle Atmosphere,” Atmos. Oceanic Opt. 21, 516–522 (2008).

    Google Scholar 

  12. C. E. Junge, C. W. Chagnon, and J. E. Manson, “Stratospheric Aerosols,” J. Meteorol. 18, 81–108 (1961).

    Google Scholar 

  13. R. C. Whitten, O. B. Toon, and R. P. Turco, “The Stratospheric Sulfate Aerosol Layer: Process, Models, Observations, and Simulations,” Pure Appl. Geophys. 118, 86–127 (1980).

    Article  ADS  Google Scholar 

  14. A. S. Koziol and J. Pudykiewicz, “High-Resolution Modeling of Size-Resolved Stratospheric Aerosol,” J. Atmos. Sci. 55, 3127–3147 (1998).

    Article  ADS  Google Scholar 

  15. C. Li and G. J. Boer, “The Continuity Equation for the Stratospheric Aerosol and Its Characteristic Curves,” J. Atmos. Sci. 57, 442–451 (2000).

    Article  ADS  Google Scholar 

  16. D. Fussen, P. Vanhellemont, and C. Bingen, “Evolution of Stratospheric Aerosols in the Post-Pinatubo Period Measured by Solar Occultation,” Atmos. Environ. 35, 5067–5078 (2001).

    Article  Google Scholar 

  17. G. Panegrossi, D. Fua, and G. Fiocco, “A 1-D Model of the Formation and Evolution of Polar Stratospheric Clouds,” J. Atmos. Chem. 23, 5–35 (1996).

    Article  Google Scholar 

  18. H. Flentje, A. Dürnbrack, F. Fix, F. Meister, H. Schmid, S. Föglistaler, B. Luo, and Th. Peter, “Denitrification Inside the Stratospheric Vortex in the Winter of 1999–2000 by Sedimentation of Large Nitric Acid Trihydrate Particles,” J. Geophys. Res. 107, 4314 (2002), doi:10.1029/2001JD001015.

    Article  Google Scholar 

  19. B. Kürcher and J. Ström, “The Roles of Dynamical Variability and Aerosols in Cirrus Cloud Formation,” Atmos. Chem. Phys. 3, 823–838 (2003).

    Article  Google Scholar 

  20. U. Lohmann and B. Kürcher, “First Interactive Simulations of Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM General Circulation Model,” J. Geophys. Res. 107, No. 10 (2002), doi: 10.1029/2001JD000767.

  21. P. Spichtinger and K. M. Gierens, “Modelling of Cirrus Clouds — Part 1b: Structuring Cirrus Clouds by Dynamics,” Atmos. Chem. Phys. 9, 707–719 (2009).

    Article  Google Scholar 

  22. M. M. R. Williams and S. K. Loyalka, Aerosol Science; Theory and Practice: with Special Applications to the Nuclear Industry (Pergamon, Oxford, 1991).

    Google Scholar 

  23. A. E. Aloyan, Simulation of Dynamics and Kinetics of Gas Impurities and Aerosols in Atmosphere (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  24. P. Raist, Introduction to Aerosol Science (Macmillan, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  25. F. Kasten, “Falling Speed of Aerosol Particles,” J. Appl. Meteorol. 7, 944–947 (1968).

    Article  ADS  Google Scholar 

  26. G. P. Anderson, S. A. Clough, F. X. Neizys, J. H. Chetwynd, and E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” Air Force Geophysics Laboratory (USA) AFGL-TR-86-0110, Environment Research Paper No. 954 (1986).

  27. A. Guha, “Transport and Deposition of Particles in Turbulent and Laminar Flow,” Ann. Rev. Fluid Mech. 40, 311–341 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  28. K. N. Volkov and V. N. Emel’yanov, Flows of Gas with Particles (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  29. J. B. Liley, “Analytic Solution of a One-Dimensional Equation for Aerosol and Gas Dispersion in the Stratosphere,” J. Atmos. Sci. 52, 3283–3288 (1995).

    Article  ADS  Google Scholar 

  30. D. N. Rao, M. V. Ratnam, T. N. Rao, and S. V. B. Rao, “Seasonal Variation of Vertical Eddy Diffusivity in the Troposphere, Lower Stratosphere and Mesosphere over a Tropical Station,” Ann. Geophys. 19, 975–984 (2001).

    ADS  Google Scholar 

  31. R. Wilson, “Turbulent Diffusivity in the Free Atmosphere Inferred from MST Radar Measurements: A Review,” Ann. Geophys. 22, 3869–3887 (2004).

    ADS  Google Scholar 

  32. S. A. Beresnev, F. D. Kovalev, L. B. Kochneva, V. A. Runkov, P. E. Suetin, and A. A. Cheremisin, “On the Possibility of Particle’s Photophoretic Levitation in the Stratosphere,” Atmos. Oceanic Opt. 16, 52–57 (2003).

    Google Scholar 

  33. S. A. Beresnev, L. B. Kochneva, P. E. Suetin, V. I. Zakharov, and K. G. Gribanov, “Photophorese of Atmospheric Aerosols in Thermal Emission Field of the Earth,” Atmos. Oceanic Opt. 16, 470–477 (2003).

    Google Scholar 

  34. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Amer. Meteorol. Soc. 77, 437–471 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Gryazin, Beresnev, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gryazin, V.I., Beresnev, S.A. On the consideration of the averaged vertical wind in problems of stratospheric aerosol transport. Atmos Ocean Opt 23, 174–180 (2010). https://doi.org/10.1134/S1024856010030036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010030036

Keywords

Navigation