Skip to main content
Log in

Statistical modeling of the intensity of light fluxes reflected by the Earth’s spherical surface

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A new algorithm of the Monte Carlo method is suggested for the statistical estimation at any arbitrary point of the atmosphere of the intensity of the visible radiation caused by the reflection of solar light fluxes from the Earth’s spherical surface. The algorithm allows for the albedo of the Earth’s optically homogeneous surface to be taken into account beyond the scheme of the statistical modeling of the trajectories of photons wandering in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Odell and J. A. Weinman, “The Effect of Atmospheric Haze on Images of the Earth’s Surface,” J. Geophys. Res. 80, 5035–5040 (1975).

    Article  ADS  Google Scholar 

  2. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer through a Scattering Medium (Nauka Tekhnika, Minsk, 1985) [in Russian].

    Google Scholar 

  3. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM Labor. Znanii, Moscow, 2005) [in Russian].

    Google Scholar 

  4. V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Linear Systems Theory in Optics of Disperse Media (Spektr IOA SO RAN, Tomsk, 1997) [in Russian].

    Google Scholar 

  5. B. A. Kargin, Statistical Simulation of the Solar Radiation Field in the Atmosphere (VTs SO RAN SSSR, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  6. M. A. Nazaraliev, Statistical Simulation of Radiation Processes in Atmosphere (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  7. V. P. Budak and O. P. Melamed, “Modified Method of Spherical Harmonics for Determining the Scattering Function of a Point in a Turbid Layer,” Opt. Atmosf. Okeana 19, 1047–1052 (2006).

    Google Scholar 

  8. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte-Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976), p. 284 [in Russian].

    Google Scholar 

  9. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7, ARGL-TR-86-0177, ERP 1010 / Hansom AFB, MA 01731.

  10. V. V. Belov, G. N. Glazov, and G. M. Krekov, Monte-Carlo Method in Computational Mathematics and Mathematical Physics (VTs SO AN SSSR, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  11. V. V. Sobolev, Transfer of Radiative Energy in the Atmospheres of Stars and Planets (Gos. Izd-vo Tekhn.-Teor. Liter., Moscow, 1956) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Belov, M.V. Tarasenkov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, V.V., Tarasenkov, M.V. Statistical modeling of the intensity of light fluxes reflected by the Earth’s spherical surface. Atmos Ocean Opt 23, 197–203 (2010). https://doi.org/10.1134/S1024856010030073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010030073

Keywords

Navigation