Skip to main content
Log in

Statistical modeling of daily maximum surface ozone concentrations

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A statistical model of the daily maximum surface ozone concentrations is suggested based on correlations with its predictors. Among the predictors are the temperature; relative humidity; mean wind speed in the planetary boundary layer; concentrations of other trace gases; and the “meteorological pollution potential,” which can characterize adverse (for atmospheric dispersion) meteorological conditions. The statistical model is suitable for surface ozone forecasting; it uses current meteorological parameters, as well as their forecasted values. The most significant predictors of the surface ozone in the Moscow region are the meteorological pollution potential and anomalies (deviations from the norms) of the temperature, relative humidity, and surface ozone on the previous day. The model was tested using the data obtained for the Moscow region and some German stations. Such a model is better than the “climate” and “inertial” models and can ensure a determination coefficient of the surface ozone anomalies of about 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Jacob, Introduction To Atmospheric Chemistry (Princeton University Press, Princeton, 1999).

    Google Scholar 

  2. S. Sillman, “The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments,” Atmos. Environ. 33(12), 1821–1845 (1999).

    Article  Google Scholar 

  3. A. M. Zvyagintsev, I. B. Belikov, V. I. Egorov, N. F. Elanskii, G. M. Kruchenitskii, I. N. Kuznetsova, A. N. Nikolaev, Z. V. Obukhova, and A. I. Skorokhod, “Positive Anomalies in the Surface Ozone Concentration in July-August 2002 over Moscow and its Sub- urbs,” Izv. RAN, Fiz. Atmosf. Okeana 40(1), 75–86 (2002).

    Google Scholar 

  4. A. M. Zvyagintsev, N. S. Ivanova, G. M. Kruchenitskii, I. N. Kuznetsova, and E. A. Lezina, “Ozone Content over the Russian Federation in 2006,” Meteorol. Gidrol., No. 2, 116–121 (2007).

  5. A. M. Zvyagintsev, T. S. Selegei, and I. N. Kuznetsova, “Surface-Ozone Variations in the City of Novosibirsk,” Opt. Atmosf. Okeana 20(7), 647–650 (2007).

    Google Scholar 

  6. N. F. Elanskii, K. B. Moiseenko, and N. V. Pankratova, “Photochemical Generation of Ozone in Anthropogenic Plumes over the Khabarovsk Krai,” Izv. RAN, Fiz. Atmosf. Okeana 41(4), 461–468 (2005).

    Google Scholar 

  7. R. Vautard, P. H. J. Builtjes, P. Thunis, C. Cuvelier, M. Bedogni, B. Bessagnet, C. Honore, N. Moussiopoulos, G. Pirovano, M. Schaap, R. Stern, L. Tarrason, and P. P. Wind, “Evaluation and Intercomparison of Ozone and PM10 Simulations by Several Chemistry Transport Models over Four European Cities within the CityDelta Project,” Atmos. Environ. 41, 173–188 (2007).

    Article  Google Scholar 

  8. A. M. Zvyagintsev and G. M. Kruchenitskii, “On Empirical Model of Surface Ozone Concentration near Moscow (Dolgoprudnyi),” Izv. RAN, Fiz. Atmosf. Okeana 32(1), 96–100 (1996).

    Google Scholar 

  9. V. I. Demin, A. Yu. Karpechko, M. I. Beloglazov, and E. Kyuro, “The Role of Turbulent Mixing in Forming Surface Ozone Concentrations on the Kola Peninsula,” Opt. Atmosf. Okeana 19(5), 448–450 (2006).

    Google Scholar 

  10. Hygienic Norms GN 2.1.6.1338-03, “Maximum Permissible Concentration (MPC) of the Pollutants in the Atmospheric Air of the Inhabited Areas” (2003).

  11. A. M. Fjaeraa, “Ozone Measurements 2004,” EMEP/CCC-Report 2/2006 (NILU, Norway, 2006), http://www.nilu.no.

    Google Scholar 

  12. N. F. Elanskii and O. I. Smirnova, “Ozone and Nitrogen Oxide Concentrations in the Atmospheric Surface Layer over Moscow,” Izv. RAN, Fiz. Atmosf. Okeana 33(5), 597–611 (1997).

    Google Scholar 

  13. A. M. Zvyagintsev, “Anomalies of the Surface Ozone in Europa,” Izv. RAN, Fiz. Atmosf. Okeana 40(3), 387–396 (2004).

    Google Scholar 

  14. T. L. Clark and T. R. Karl, “Application of Prognostic Meteorological Variables to Forecasts of Daily Maximum One-Hour Ozone Concentrations in the Northeastern United States,” J. Appl. Meteorol. 21, 1662–1671 (1982).

    Article  ADS  Google Scholar 

  15. U. Feister and K. Balzer, “Surface Ozone and Meteorological Predictors on a Subregional Scale,” Atmos. Environ., A 25(9), 1781–1790 (1991).

    Google Scholar 

  16. J. B. Flaum, S. T. Rao, and I. G. Zurbenko, “Moderating the Influence of Meteorological Conditions on Ambient Ozone Concentrations,” J. Air Waste Man- age. Assoc. 46(1), 35–46 (1996).

    Google Scholar 

  17. Jianhui Bai, Wang Gengchen, and Wang Mingxing, “An Empirical Correlation between Surface O3 and its Factors,” Atmos. Environ. 39(25), 4419–4423 (2005).

    Article  Google Scholar 

  18. M. Demuzere and R. M. Trigo, J. Vila-Guerau de Arellano, and N. P. M. van Lipzig, “The Impact of Weather and Atmospheric Circulation on O3 and PM10 Levels at a Rural Mid-Latitude Site,” Atmos. Chem. Phys. 9(8), 2695–2714 (2009).

    Article  Google Scholar 

  19. A. M. Zvyagintsev and I. N. Kuznetsova, “Surface Ozone Variations in Moscow Environs: The Results of Continuous Ten-Year Observations,” Izv. RAN, Fiz. Atmosf. Okeana 38(4), 486–495 (2002).

    Google Scholar 

  20. O. A. Tarasova and A. Yu. Karpetchko, “Atmospheric Chemistry and Physics Accounting for Local Meteorological Effects in the Ozone Time-Series of Lovozero (Kola Peninsula),” Atmos. Chem. Phys. 3, 941–949 (2003).

    Article  Google Scholar 

  21. A. M. Zvyagintsev, “Measurements of Concentrations of Surface Ozone in Dolgoprudnyi during 1991–1993,” Izv. RAN, Fiz. Atmosf. Okeana 31(1), 115–119 (1995).

    MathSciNet  Google Scholar 

  22. S. Solberg, O. Hov, A. Soevde, I. Isaksen, P. Coddeville, H. De Backer, C. Forster, Y. J. Orsolini, and K. Uhse, “European Surface Ozone in the Extreme Summer 2003,” Atmos. Chem. Phys. Discuss. 5(5), 9003–9038 (2005).

    Article  ADS  Google Scholar 

  23. Transboundary Air Pollution: Acidification, Eutrophication and Ground-Level Ozone in UK (NEGTAP 2001) (CEH, Edinburgh, 2001).

  24. A. M. Zvyagintsev and G. M. Kruchenitskii, “On Spatial-Temporal Connection of Ozone Concentrations in Europe,” Izv. RAN, Fiz. Atmosf. Okeana 33(1), 104–113 (1997).

    Google Scholar 

  25. A. M. Zvyagintsev, V. V. Rudakov, I. N. Kuznetsova, and V. I. Demin, “Temporal Trend of Surface Ozone in the Central Part of European Russia in the Spring-Summer of 2004,” Meteorol. Gidrol., No. 4, 41–46 (2004).

  26. GOST 12.1.005-88, “SSBT. General Sanitary Requirements for Working Zone Air”.

  27. R. Vautard, M. Beekmann, J. Roux, and D. Gombert, “Validation of a Deterministic Forecasting System for the Ozone Concentrations Over the Paris Area,” Atmos. Environ. 35, 2449–2461 (2001).

    Article  Google Scholar 

  28. RD 52.27.284-91. MU. Carrying of Industrial Experiments of New and Advanced Methods of Hydrometeorological and Heliophysical Predictions (Goskomgidromet, Moscow, 1991) [in Russian].

  29. “Directive 2002/3/EC of 12 February 2002 Relating to Ozone in Ambient Air,” Official J. Eur. Union. L67/14 (2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Zvyagintsev, I.B. Belikov, N.F. Elanskii, G. Kakadzhanova, I.N. Kuznetsova, O.A. Tarasova, I.Yu. Shalygina, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvyagintsev, A.M., Belikov, I.B., Elanskii, N.F. et al. Statistical modeling of daily maximum surface ozone concentrations. Atmos Ocean Opt 23, 284–292 (2010). https://doi.org/10.1134/S102485601004007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601004007X

Keywords

Navigation