Skip to main content
Log in

Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The possibility of measuring the wind velocity and direction with 2-μm pulsed coherent Doppler lidar in conditions of a weak echo signal is investigated. It is shown that the use of the filtered sine wave fitting of the lidar-measured radial wind velocities allows for the estimation of the wind velocity vector components with an acceptable accuracy at a low signal-to-noise ratio up to values of −20 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Lhermitte and D. Atlas, “Precipitation Motion by Pulse Doppler Radar,” in Proc. of the 9th Weather Radar Conf. (Amer. Meteorol. Soc., Kansas City, MO, 1961), pp. 218–223.

    Google Scholar 

  2. R. J. Doviak and D. S. Zrnic, Doppler Radar and Weather Observation (Academic, New York, 1984).

    Google Scholar 

  3. Ch. Werner, “Fast Sector Scan and Pattern Recognition for a CW Laser Doppler Anemometer,” Appl. Opt. 24, 3557–3564 (1985).

    Article  ADS  Google Scholar 

  4. J. G. Hawley, R. Tang, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent Launch-Site Atmospheric Wind Sounder: Theory and Experiment,” Appl. Opt. 32, 4557–4567 (1993).

    Article  ADS  Google Scholar 

  5. I. N. Smalikho, “Techniques of Wind Vector Estimation from Data Measured with a Scanning Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 20, 276–291 (2003).

    Article  ADS  Google Scholar 

  6. S. F. Clifford and S. Wandzura, “Monostatic Heterodyne Lidar Performance: The Effect of the Turbulent Atmosphere,” Appl. Opt. 20, 514–516 (1981).

    Article  ADS  Google Scholar 

  7. R. G. Frehlich and M. J. Kavaya, “Coherent Laser Radar Performance for General Atmospheric Refractive Turbulence,” Appl. Opt. 30, 5325–5352 (1991).

    Article  ADS  Google Scholar 

  8. D. S. Zrnic, “Estimation of Spectral Moments of Weather Echoes,” IEEE Trans. Geosci. Electron. 17, 113–128 (1979).

    Article  Google Scholar 

  9. R. Frehlich and M. J. Yadlowsky, “Performance of Mean-Frequency Estimators for Doppler Radar and Lidar,” J. Atmos. Ocean. Technol. 11, 1217–1230 (1994).

    Article  ADS  Google Scholar 

  10. B. J. Rye and R. M. Hardesty, “Detecting Techniques for Validating Doppler Estimates in Heterodyne Lidar,” Appl. Opt. 36, 1940–1951 (1997).

    Article  ADS  Google Scholar 

  11. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968).

    MATH  Google Scholar 

  12. P. Salamitou, A. Dabas, and P. H. Flamant, “Simulation in the Time Domain for Heterodyne Coherent Laser Radar,” Appl. Opt. 34, 499–506 (1995).

    Article  ADS  Google Scholar 

  13. R. Frehlich, “Effect of Wind Turbulence on Coherent Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).

    Article  ADS  Google Scholar 

  14. V. A. Banakh and I. N. Smalikho, “Estimation of the Turbulence Energy Dissipation Rate from the Pulsed Doppler Lidar Data,” Opt. Atmosf. Okeana 10, 1524–1538 (1997) [Atmosph. Ocean. Opt. 10 (12), 957 (1997)].

    Google Scholar 

  15. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickman, “High-Resolution Doppler Lidar for Boundary Layer and Cloud Research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).

    Article  ADS  Google Scholar 

  16. N. Kelley, M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton, “Lamar Low-Level Jet Program,” Interim NREL Report TP-500-34593 (Nat. Renewable Energy Labor., Golden, CO, 2004).

    Google Scholar 

  17. Y. L. Pichugina, R. M. Banta, N. D. Kelley, and W. A. Brewer, “Nocturnal Boundary Layer Height Estimate from Doppler Lidar Measurements,” in Proc. of the 18th Symp. on Boundary Layer and Turbulence, Stockholm, Sweden, June 2008, 7B.6.

  18. V. A. Banakh, I. N. Smalikho, E. L. Pichugina, and A. Brewer, “Representativeness of Measurements of the Dissipation Rate of Turbulence Energy by Scanning Doppler Lidar,” Opt. Atmosf. Okeana 22, 966–972 (2009) [Atmosph. Ocean. Opt. 23, 48 (2010)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Banakh, A. Brewer, E.L. Pichugina, I.N. Smalikho, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banakh, V.A., Brewer, A., Pichugina, E.L. et al. Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal. Atmos Ocean Opt 23, 381–388 (2010). https://doi.org/10.1134/S1024856010050076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010050076

Keywords

Navigation