Skip to main content
Log in

Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processing

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The procedure of lidar data processing permitting one to estimate the dissipation rate of turbulent kinetic energy from wind measurements with a pulsed coherent Doppler lidar (PCDL) upon conical scanning by a probing beam is presented. The proposed algorithm for the PCDL data processing was tested and the error of the lidar estimate of the dissipation rate was calculated as a function of the number of full scans by a probing beam using numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Smalikho and Sh. Rahm, “Lidar Investigations of the Effects of Wind and Atmospheric Turbulence on an Aircraft Wake Vortex,” Atmos. Ocean. Opt. 23(2), 137–149 (2010).

    Article  Google Scholar 

  2. Y. Kasler, S. Rahm, and R. Simmet, “Wake Measurements of a Multi-MW Wind Turbine with Coherent Long-Range Pulsed Doppler Wind Lidar,” J. Atmos. and Ocean. Technol. 27(9), 1529–1532 (2010).

    Article  ADS  Google Scholar 

  3. I. N. Smalikho, F. Kopp, and S. Rahm, “Measurement of Atmospheric Turbulence by 2-μm Doppler Lidar,” J. Atmos. and Ocean. Technol. 22(11), 1733–1747 (2005).

    Article  ADS  Google Scholar 

  4. R. G. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of Boundary Layer Profiles in Urban Environment,” J. Appl. Meteorol. and Climatology 45(6), 821–837 (2006).

    Article  ADS  Google Scholar 

  5. V. A. Banakh and I. N. Smalikho, “Estimation of the Turbulence Energy Dissipation Rate from the Pulsed Doppler Lidar Data,” Atmos. Ocean. Opt. 10(12), 957–965 (1997).

    Google Scholar 

  6. R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler Lidar Measurements of Wind Field Statistics,” Boundary-Layer Meteorol. 86(1), 223–256 (1998).

    ADS  Google Scholar 

  7. R. G. Frehlich and L. B. Cornman, “Estimating Spatial Velocity Statistics with Coherent Doppler Lidar,” J. Atmos. and Ocean. Technol. 19(3), 355–366 (2002).

    Article  ADS  Google Scholar 

  8. V. A. Banakh, Sh. Rahm, I. N. Smalikho, and F. V. Falits, “Measurement of Atmospheric Turbulence Parameters by Vertically-Scanning Pulsed Coherent Lidar,” Atmos. Ocean. Opt. 20(12), 1019–1023 (2007).

    Google Scholar 

  9. V. A. Banakh, I. N. Smalikho, Y. L. Pichugina, and W. A. Brewer, “Representativeness of Measurements of the Dissipation Rate of Turbulence Energy by Scanning Doppler Lidar,” Atmos. Ocean. Opt. 23(1), 48–54 (2010).

    Article  Google Scholar 

  10. V. A. Banakh, I. N. Smalikho, F. Kopp, and Ch. Werner, “Measurements of Turbulent Energy Dissipation Rate with a CW Doppler Lidar in the Atmospheric Boundary Layer,” J. Atmos. and Ocean. Technol. 16(8), 1044–1061 (1999).

    Article  ADS  Google Scholar 

  11. R. G. Frehlich, “Estimation of Velocity Error for Doppler Lidar Measurements,” J. Atmos. and Ocean. Technol. 18(10), 1628–1639 (2001).

    Article  ADS  Google Scholar 

  12. R. J. Doviak and D. S. Zrnic, Doppler Radar and Weather Observations (Academic Press, San Diego, 1984).

    Google Scholar 

  13. N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in a Free Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  14. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1967), Part 2 [in Russian].

    Google Scholar 

  15. N. L. Byzova, V. N. Ivanov, and E. K. Garger, Turbulence in Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  16. R. G. Frehlich, “Effect of Wind Turbulence on Coherent Doppler Lidar Performance,” J. Atmos. and Ocean. Technol. 14(2), 54–75 (1997).

    Article  ADS  Google Scholar 

  17. J. Lumley and H. Panofsky, The Structure of Atmospheric Turbulence (Interscience Publisher, New York-London-Sydney, 1964).

    Google Scholar 

  18. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickman, “High-Resolution Doppler Lidar for Boundary Layer and Cloud Research,” J. Atmos. and Ocean. Technol. 18(3), 376–393 (2001).

    Article  ADS  Google Scholar 

  19. I. N. Smalikho, V. A. Banakh, E. L. Pichugina, and A. Brewer, “Accuracy of Estimation of the Turbulent Energy Dissipation Rate from Wind Measurements with a Conically Scanning Pulsed Coherent Doppler Lidar. Part II. Numerical and Atmospheric Experiments,” Atmos. Ocean. Opt. 26(5), 411–416 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.N. Smalikho, V.A. Banakh, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smalikho, I.N., Banakh, V.A. Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processing. Atmos Ocean Opt 26, 404–410 (2013). https://doi.org/10.1134/S102485601305014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601305014X

Keywords

Navigation