Skip to main content
Log in

Photoacoustic measurements of UV laser Pulse (266 nm) absorption in mixtures of water vapor with nitrogen

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of photoacoustic measurements of absorption of 266 nm-laser pulses (the fourth harmonics of a YAG laser) by mixtures of water vapor and nitrogen, depending on the radiation intensity (0.5–10 MW cm−2) and H2O partial pressure (0–10 mbar), are presented. It is shown that the linear absorption (in the given range of intensities) increases with H2O partial pressure in a range 0–5 mbar and remains almost stable in a range 5–10 mbar exceeding the absorption in the pure nitrogen only by two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Klimkin and V. N. Fedorishchev, “Laser induced continuum band of atmospheric fluorescence,” Opt. Atmosf. 1(7), 72–76 (1988).

    Google Scholar 

  2. V. M. Klimkin and V. N. Fedorishchev, “Laser induced fluorescence of N2O vapors,” Opt. Atmosf. 1(8), 26–30 (1988).

    Google Scholar 

  3. V. M. Klimkin and V. N. Fedorishchev, “New atmospheric absorption band in the UV spectral range,” Opt. Atmosf. 2(2), 220–221 (1989).

    Google Scholar 

  4. S. F. Luk’yanenko, T. I. Novakovskaya, and I. N. Potap- kin, “Study of the N2O vapor absorption spectrum in the 270–330 nm region,” Opt. Atmosf. 2(7), 706–709 (1989).

    Google Scholar 

  5. V. M. Klimkin, S. F. Luk’yanenko, I. N. Potapkin, and V. N. Fedorishchev, “Study of the N2O vapor fluorescence excitation function,” Opt. Atmosf. 2(3), 322–323 (1989).

    Google Scholar 

  6. S. F. Luk’yanenko, T. I. Novakovskaya, and I. N. Potapkin, “Study of N2O vapor absorption in the 265…350 nm region using a KSVU-12M-based spectrophotometer,” Opt. Atmosf. 3(11), 1190–1192 (1990).

    Google Scholar 

  7. Yu. N. Ponomarev and I. S. Tyryshkin, “Spectrophotometric complex for measuring absorption of laser radiation by molecular gases in the IR, visible, and UV regions,” Atmos. Ocean. Opt. 6(4), 224–228 (1993).

    Google Scholar 

  8. B. A. Tikhomirov, V. O. Troitskii, V. A. Kapitanov, G. S. Evtuschenko, and Yu. N. Ponomarev, “Photoacoustic measurements of water vapor absorption coefficient in UV spectral region,” Acta Physica Sinica 7(3), 190–195 (1998).

    ADS  Google Scholar 

  9. M. M. Makogon and A. N. Kuryak, “Fluorescence of the atmosphere under the exposure to fifth harmonic of Nd:YAG laser (212.8 nm),” Atmos. Ocean. Opt. 14(10), 874–876 (2001).

    Google Scholar 

  10. N. A. Zvereva, “Theoretical description of the photodissociative spectrum of monomer and dimer water,” Opt. Spektrosk. 91(1), 1–5 (2001).

    Article  Google Scholar 

  11. A. D. Bykov, S. S. Voronina, and M. M. Makogon, “Estimation of absorption of 0.27-μm wavelength radiation by atmospheric water vapor,” Atmos. Ocean. Opt. 16(4), 288–291 (2003).

    Google Scholar 

  12. A. D. Bykov, S. S. Voronina, and M. M. Makogon, “Water vapor absorption band nearby 270 nm: intensity borrowing mechanism,” Atmos. Ocean. Opt. 16(11), 912–915 (2003).

    Google Scholar 

  13. A. D. Bykov, S. S. Voronina, and M. M. Makogon, “The water vapor 0.27 mkm absorption band: Hypothesis of band strengthening,” Proc. SPIE 5311, 72–76 (2003).

    Google Scholar 

  14. M. M. Makogon, “Spectral characteristics of water vapor in UV spectral region,” Atmos. Ocean. Opt. 14(9), 696–706 (2001).

    Google Scholar 

  15. M. M. Makogon, Yu. N. Ponomarev, and B. A. Tikhomirov, “The problem of water vapor absorption in the UV spectral range,” Atmos. Ocean. Opt. 26(1), 45–49 (2013).

    Article  Google Scholar 

  16. A. B. Tikhomirov, K. M. Firsov, V. S. Kozlov, M. V. Panchenko, Yu. N. Ponomarev, and B. A. Tikhomirov, “Investigation of spectral dependence of shortwave radiation absorption by ambient aerosol using time-resolved photoacoustic technique,” Opt. Eng. 4(7), 071203–1 (2005).

    Article  ADS  Google Scholar 

  17. A. M. Kiselev, Yu. N. Ponomarev, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41(11), 976–980 (2011).

    Article  ADS  Google Scholar 

  18. A. B. Antipov, V. A. Kapitanov, Yu. N. Ponomarev, and V. A. Sapozhnikova, PA Method in Laser Spectroscopy of Molecular Gases (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  19. A. B. Tikhomirov, I. V. Ptashnik, and B. A. Tikhomirov, “Measurement of the continuum absorption coefficient of water vapor near 14400 cm−1 (0.694 μm),” Opt. Spectrosc. 101(1), 80–89 (2006).

    Article  ADS  Google Scholar 

  20. V. P. Zharov and V. S. Letokhov, Laser PA Spectroscopy (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Kuryak, M.M. Makogon, Yu.N. Ponomarev, B.A. Tikhomirov, 2014, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuryak, A.N., Makogon, M.M., Ponomarev, Y.N. et al. Photoacoustic measurements of UV laser Pulse (266 nm) absorption in mixtures of water vapor with nitrogen. Atmos Ocean Opt 27, 71–74 (2014). https://doi.org/10.1134/S1024856014010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014010072

Keywords

Navigation