Skip to main content
Log in

Total ozone variations and trends during the period 1979–2014

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Variations and trends in the total ozone (TO) content over the period 1979–2014 are studied using monthly mean data from ERA-Interim reanalysis database in different latitudinal belts and TOMS/SBUV/OMI satellite data. We estimated how TO variations, averaged over different latitudinal belts and globally, are modulated by Arctic and Antarctic oscillations, quasi-biennial oscillations of zonal wind in the equatorial stratosphere, El Niño–Southern Oscillation, zonal average meridional heat flux in the lower stratosphere, solar activity (SA), stratospheric content of ozone-depleting substances (ODS), and volcanic aerosol particles. Variations in global TO can be described well using regression dependence on ODS and SA; and certain of the above-mentioned factors should be additionally taken into consideration for a more accurate quantitative description of TO time behavior in certain latitudinal belts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P.. Levelt, A. Makshtas, C. T. McElroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. Gathen, K. A. Walker, and N. S. Zinoviev, “Unprecedented Arctic ozone loss in 2011,” Nature 478 (7370), 469–475 (2011).

    Article  ADS  Google Scholar 

  2. A. M. Zvyagintsev, G. I. Kuznetsov, and I. N. Kuznetsova, “Ozone anomalies in spring over Russia,” Rus. Meteorol. Hydrol. 38 (5), 5–13 (2013).

    Google Scholar 

  3. Ecological and Climate Parameters of the Atmosphere in 2011 According to Data from MSU Meteorological Observatory, Ed. by N.E. Chubarova et al. (MAKS Press, Moscow, 2012) [in Russian].

  4. P. N. Vargin and A. N. Gruzdev, “What happens with the ozone layer at present?,” Vestn. Rus. Akad. Sci. 83 (4), 354–358 (2013).

    Google Scholar 

  5. WMO Ozone Report no. 55. Scientific Assessment of Ozone Depletion: 2014 (WMO, Geneve, 2014).

  6. W. Wang, W. Tian, S. Dhomse, F. Xie, J. Shu, and J. Austin, “Stratospheric ozone depletion from future nitrous oxide increases,” Atmos. Chem. Phys. 14 (23), 12967–12982 (2014).

    Article  ADS  Google Scholar 

  7. R. Bojkov, L. Bishop, W. J. Hill, G. C. Reinsel, and G. C. Tiao, “A statistical trend analysis of revised Dobson total ozone data over the northern hemisphere,” J. Geophys. Res., D 95 (7), 9785–9807 (1990).

    Article  ADS  Google Scholar 

  8. R. S. Stolarski, P. Bloomfield, R. D. McPeters, and J. R. Herman, “Total ozone trends deduced from Nimbus 7 TOMS data,” Geophys. Res. Lett. 18 (6), 1015–1018 (1991).

    Article  ADS  Google Scholar 

  9. R. Stolarski, R. Bojkov, L. Bishop, Ch. Zerefos, J. Staehelin, and J. Zawodny, “Measured trends in stratospheric ozone,” Science 256 (5055), 342–349 (1992).

    Article  ADS  Google Scholar 

  10. A. A. Chernikov, Yu. A. Borisov, A. M. Zvyagintsev, G. M. Kruchenitskii, and S. P. Perov, “Variability of ozone layer in 1979–1999,” Atmos. Ocean. Opt. 13 (1), 89–95 (2000).

    Google Scholar 

  11. A. M. Zvyagintsev, N. E. Kadygrov, and G. M. Kruchenitskii, “Analysis of time series of the total ozone fron satellite data,” Issled. Zemli Kosmosa, No. 4, 29–37 (2003).

    Google Scholar 

  12. V. I. Bekoryukov, V. N. Glazkov, and G. A. Kokin, “Long-term variations in global ozone,” Izv., Atmos. Ocean. Phys. 45 (5), 566–574 (2009).

    Article  Google Scholar 

  13. E. A. Titova, I. L. Karol’, A. M. Shalamyanskii, L. P. Klyagina, and A. A. Solomatnikova, “Statistical analysis and comparison of external factor effects on the total ozone field over the Russian territory in 1973–2007,” Rus. Meterol. Hydrol. 34 (7), 442–453 (2009).

    Article  Google Scholar 

  14. A. M. Zvyagintsev, L. B. Anan’ev, and A. A. Artamonova, “Total ozone variability over the Russian territory during the period 1973–2008,” Opt. Atmos. Okeana 23 (3), 190–195 (2010).

    Google Scholar 

  15. W. Chehade, M. Weber, and J. Burrows, “Total ozone trends and variability during 1979–2012 from merged data sets of various satellites,” Atmos. Chem. Phys. 14 (13), 7059–7074 (2014).

    Article  ADS  Google Scholar 

  16. S. Frith, N. Kramarova, R. Stolarski, D. McPeters, P. Bhartia, and G. Labow, “Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set,” J. Geophys. Res., D 119 (16), 9735–9751 (2014).

    ADS  Google Scholar 

  17. J. Kuttippurath, G. Bodeker, H. Roscoe, and P. Nair, “A cautionary note on the use of EESC-based regression analysis for ozone trend studies,” Geophys. Res. Lett. 42 (1), 162–168 (2015).

    Article  ADS  Google Scholar 

  18. J. Knibbe and A. de Laat, “Spatial regression analysis on 32 years of total column ozone data,” Atmos. Chem. Phys. 14 (16), 8461–8482 (2014).

    Article  ADS  Google Scholar 

  19. J. Krzyzscin, “The ozone recovery in the NH extratropics: The trend analyses of the SBUV/SBUV-2 merged ozone data in the 1979–2012 period,” Atmos. Environ. 98, 17–24 (2014).

    Article  ADS  Google Scholar 

  20. L. Frossard, H. E. Rieder, M. Ribatet, J. Staehelin, J. A. Maeder, S. Di Rocco, A. C. Davison, and T. Peter, “On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes—Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry,” Atmos. Chem. Phys. 13 (1), 147–164 (2013).

    Article  ADS  Google Scholar 

  21. H. E. Rieder, L. Frossard, M. Ribatet, J. Staehelin, J. A. Maeder, S. Di Rocco, A. C. Davison, T. Peter, P. Weihs, and F. Holawe, “On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes—Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes,” Atmos. Chem. Phys. 13 (1), 165–179 (2013).

    Article  ADS  Google Scholar 

  22. T. G. Shepherd, D. A. Plummer, J. F. Scinocca, M. I. Hegglin, V. E. Fioletov, M. C. Reader, E. Remsberg, T. von Clarmann, and H. J. Wang, “Reconciliation of halogen-induced ozone loss with the total-column ozone record,” Nature Geosci. 7 (5), 443–449 (2014).

    Article  ADS  Google Scholar 

  23. U. Langematz, S. Meul, K. Grunow, E. Romanowsky, S. Oberlander, J. Abalichin, and A. Kubin, “Future Arctic temperature and ozone: The role of stratospheric composition changes,” J. Geophys. Res., D 119 (5), 2092–2112 (2014).

    ADS  Google Scholar 

  24. V. Fioletov, “Ozone climatology, trends, and substances that control ozone,” Atmosphere-Ocean. 46 (1), 39–67 (2008).

    Article  Google Scholar 

  25. A. M. Zvyagintsev and G. M. Kruchenitskii, “Estimates of the trend in total ozone content over Europe and variations of the global circulation of the atmosphere,” Atmos. Ocean. Opt. 10 (9), 654–658 (1997).

    Google Scholar 

  26. B. E. Soukharev and L. L. Hood, “Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets and comparisons with models,” J. Geophys. Res. 111, D20314 (2006).

  27. W. J. Randel and J. B. Cobb, “Coherent variations of monthly mean total ozone and lower stratospheric temperature,” J. Geophys. Res., D 99 (3), 5433–5447 (1994).

    Article  ADS  Google Scholar 

  28. F. Xie, J. Li, W. Tian, J. Zhang, and J. Shu, “The impacts of two types of El Nino on global ozone variations in the last three decades,” Adv. Atmos. Sci. 31 (6), 1113–1126 (2014).

    Article  Google Scholar 

  29. P. Newman, J. Daniel, D. Waugh, and E. Nash, “A new formulation of equivalent effective stratospheric chlorine (EESC),” Atmos. Chem. Phys. 7 (17), 4537–4552 (2007).

    Article  ADS  Google Scholar 

  30. R. Dragani, “On the quality of the ERA-Interim ozone reanalyses: Comparisons with satellite data,” Quart. J. Roy. Meteorol. Soc. A 137 (658), 1312–1326 (2011).

    Article  ADS  Google Scholar 

  31. WMO Ozone Report N 43. SPARC/IOC/GAW Assessment of trends in the vertical distribution of ozone (WMO, Geneve, 1998).

  32. S. Dhomse, M. Weber, I. Wohltmann, M. Rex, and J. Burrows, “On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003,” Atmos. Chem. Phys. 6 (5), 1165–1180 (2006).

    Article  ADS  Google Scholar 

  33. A. M. Zvyagintsev, L. B. Anan’ev, and A. A. Artamonova, “Total ozone variability over the Russian territory during the period 1973–2008,” Opt. Atmos. Okeana 23 (3), 190–195 (2010).

    Google Scholar 

  34. M. L. Salby, E. A. Titova, and L. Deschamps, “Changes of the Antarctic ozone hole: Controlling mechanisms, seasonal predictability, and evolution,” J. Geophys. Res. 117, D10111 (2012). doi 10.1029/2011JD016285

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zvyagintsev.

Additional information

Original Russian Text © A.M. Zvyagintsev, P.N. Vargin, S. Peshin, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagintsev, A.M., Vargin, P.N. & Peshin, S. Total ozone variations and trends during the period 1979–2014. Atmos Ocean Opt 28, 575–584 (2015). https://doi.org/10.1134/S1024856015060196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856015060196

Keywords

Navigation