Skip to main content
Log in

The History of the Development and Genesis of Works on Adaptive Optics at the Institute of Atmospheric Optics

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A survey of the development of adaptive optics, its methods, and tools for the elimination of irregular distortions appearing in the process of light propagation in an inhomogeneous medium is presented. Many ideas developed in recent years were put forward rather long ago; however, only now, owing to creation of state-of-the-art hardware components of optoelectronic systems and devices, they begin to be included in the widest fields of science and technology. The work also presents the current status of adaptive optics systems in solar astronomy, as well as some aspects of their use in systems correcting distortions of powerful laser systems. A retrospective analysis of investigations in the V.E. Zuev Institute of Atmospheric Optics in relation to adaptive optics is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. H. W. Babcock, Publ. Astron. Soc. Pac 65, 229–236 (1953).

    Article  ADS  Google Scholar 

  2. V. P. Linnik, “Possibility in principle of weakening the atmospheric effect on a star image,” Opt. Spektrosk. 57, 401 (1957).

    Google Scholar 

  3. R. K. Tyson, Principles of Adaptive Optics (Academic Press, Boston, 1991).

    Google Scholar 

  4. J. W. Hardy, “Active optics: A new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).

    Article  ADS  Google Scholar 

  5. J. W. Hardy, J. Feinlieb, and J. C. Wyant, “Real-time phase correction of optical imaging systems,” Proc. Top. Meeting. University of Colorado. Boulder. USA (1974).

  6. F. Merkle, “The VLT adaptive optics prototype system,” Messenger 58, 1–9 (1989).

    ADS  Google Scholar 

  7. V. I. Tatarskii, Theory of Fluctuation Phenomena during Wave Propagation through a Turbulent Atmosphere (AN SSSR, Moscow, 1959) [in Russian].

    Google Scholar 

  8. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  9. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer, Berlin, 1978).

    Book  Google Scholar 

  10. D. L. Fried, “Limiting resolution looking down through the atmosphere,” J. Opt. Soc. Am. 56, 1380 (1966).

    Article  ADS  Google Scholar 

  11. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Asroph. 3 (6), 84–85 (1970).

    Google Scholar 

  12. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390–392 (1977).

    Article  ADS  Google Scholar 

  14. D. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. 66, 193–206 (1976).

    Article  ADS  Google Scholar 

  15. O. N. Emaleev, V. I. Nazarchuk, and V. V. Pokasov, USSR Inventor’s Certificate No. 397852 (1972).

  16. A. M. Obukhov, “Influence of weak atmospheric inhomogeneities on sound and light propagation,” Izv. Akad. Nauk SSSR. Geofiz., No. 2, 155–165 (1953).

  17. A. S. Gurvich, “Estimation of turbulence parameters from experiments on light propagation,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 4 (2), 160–169 (1968).

    Google Scholar 

  18. V. P. Lukin, V. V. Pokasov, and S. S. Khmelevtsov, “Investigation of the time characteristics of fluctuations of the phases of optical waves propagating in the bottom layer of the atmosphere,” Radiophys Quantum Electron. 15 (12), 1426–1430 (1972).

    Article  ADS  Google Scholar 

  19. V. L. Mironov, V. P. Lukin, V. V. Pokasov, and S. S. Khmelevtsov, “Phase fluctuations of modulating oscillation of an optical carrier in the surface air layer,” Izv. Akad. Nauk SSSR. Radiotekh. Elektron. 18 (3), 502–507 (1973).

    Google Scholar 

  20. V. P. Lukin and I. P. Lukin, “Propagation of modulated waves in a turbulent atmosphere. II. Correlation functions and frequency spectrum of fluctuations of the modulating-oscillation phase,” Sov. J. Quantum Electron. 8 (5), 641–643 (1978).

    Article  ADS  Google Scholar 

  21. V. P. Lukin and V. V. Pokasov, “Phase fluctuations of optical waves propagating in a turbulent atmosphere,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 16 (11), 1726–1729 (1973).

    Google Scholar 

  22. V. L. Mironov, V. P. Lukin, V. V. Pokasov, and S. S. Khmelevtsov, “Phase fluctuations of optical waves propagating in a turbulent atmosphere,” Izv. Akad. Nauk SSSR. Radiotekh. Elektron. 20 (6), 1164–1170 (1975).

    ADS  Google Scholar 

  23. V. L. Mironov, V. P. Lukin, V. V. Pokasov, and S. S. Khmelevtsov, “Phase optical measurements of the spectral density of air refractive index fluctuations,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 12 (5), 550–553 (1976).

    Google Scholar 

  24. V. P. Lukin, V. V. Pokasov, V. M. Sazanovich, and V. L. Mironov, “Phase measurements of the inner scale of atmospheric turbulence,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 12 (12), 1317–1319 (1976).

    Google Scholar 

  25. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solution of Incorrect Problems (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  26. V. P. Lukin, V. V. Pokasov, N. S. Time, and L. S. Turovtseva, “Retrieval of the spectrum of pulsations of the air refractive index from optical measurements,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 13 (1), 90–94 (1977).

    Google Scholar 

  27. V. P. Lukin and V. V. Pokasov, “Optical wave phase fluctuations,” Appl. Opt. 20 (1), 121–135 (1981).

    Article  ADS  Google Scholar 

  28. V. P. Lukin, ”Efficiency of the compensation of phase distortions of optical waves,” Sov. J. Quantum Electron. 7 (4), 522–524 (1977).

    Article  ADS  Google Scholar 

  29. V. P. Lukin, “Efficiency of some correction systems,” Opt. Lett. 4 (1), 15–17 (1979).

    Article  ADS  Google Scholar 

  30. V. P. Lukin, “Comparative characteristics of some correction algorithms,” Sov. J. Quantum Electron. 11 (10), 1311–1314 (1981).

    Article  ADS  Google Scholar 

  31. V. P. Lukin and M. I. Charnotskii, “Reciprocity principle and adaptive control of optical radiation parameters,” Sov. J. Quantum Electron. 12 (5), 602–605 (1982).

    Article  ADS  Google Scholar 

  32. V. P. Lukin and V. L. Mironov, “Dynamic characteristics of adaptive optical systems,” Sov. J. Quantum Electron. 15 (9), 1293–1294 (1985).

    Article  ADS  Google Scholar 

  33. V. P. Lukin, “Dynamic characteristics of optical adaptive prognostic systems,” Izv. Izv. Akad. Nauk SSSR. Radiotekh. Elektron. 31 (9), 1808–1812 (1986).

    ADS  Google Scholar 

  34. V. P. Lukin and V. E. Zuev, “Dynamic characteristics of optical adaptive systems,” Appl. Opt. 26 (1), 139–144 (1987).

    Article  ADS  Google Scholar 

  35. V. P. Lukin and M. I. Charnotskii, “Back wave propagation in randomly inhomogeneous media,” Izv. Vyssh. Ucheb. Zaved. Fiz., No. 11, 51–63 (1985).

  36. V. P. Lukin, Atmospheric Adaptive Optics (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  37. V. P. Lukin, “Atmospheric adaptive optics,” SPIE Press 23, 275 (1995).

    ADS  Google Scholar 

  38. V. P. Lukin and O. N. Emaleev, “Correction of angular displacements of optical beams,” Sov. J. Quantum Electron. 12 (11), 1470–1474 (1982).

    Article  ADS  Google Scholar 

  39. V. P. Lukin, N. N. Botygina, and A. G. Frizen, “Mode correction for turbulent distortions of optical waves,” Sov. J. Quantum Electron. 16 (8), 1078–1080. 1986.

    Article  ADS  Google Scholar 

  40. L. A. Antoshkin, O. N. Emaleev, V. P. Lukin, V. N. Sukonkina, V. V. Khatsko, and A. P. Yankov, “Equipment for meteorological research in the atmosphere,” Pribory Tekh. Eksper., No. 3, 240–241 (1986).

  41. N. N. Botygina, O. N. Emaleev, and V. P. Lukin, “Experiments on the mode correction of optical waves,” in Atmospheric Instability and Adaptive Telescope (Nauka, Leningrad, 1988), p. 22–24 [in Russian].

    Google Scholar 

  42. L. V. Antoshkin, O. N. Emaleev, and V. P. Lukin, “Piezoceramic wavefront tilt corrector.” Pribory Tekh. Eksper., No. 5, 211–212 (1988).

  43. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, V. P. Lukin, and S. F. Potanin, “The adaptive optical system for an image distortions correction,” Opt. Atmos. Okeana 2 (6), 510–515 (1989).

    Google Scholar 

  44. V. P. Lukin, “The efficiency of the wave front corrections for the general slope and defocusing,” Opt. Atmos. Okeana 2 (6), 563–572 (1989).

    Google Scholar 

  45. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, V. P. Lukin, and S. F. Potanin, “The adaptive optical system for an image distortions correction,” Opt. Atmos. Okeana 2 (6), 510–515 (1989).

    Google Scholar 

  46. V. P. Lukin, ”Multielement image correction system,” Atmos. Ocean. Opt. 3 (12), 1235–1243 (1990).

    Google Scholar 

  47. L. V. Antoshkin, V. P. Lukin, N. N. Botugina, O. N. Emaleev, and S. F. Potanin, “Experiments on the Adaptive Image Formation,” Proc. SPIE—Int. Soc. Opt. Eng. 1968, 319–326 (1993).

  48. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, and V. P. Lukin, “Efficiency of image correction when compensating for random wave-front tilt angles of radiation passed through the turbulent atmosphere,” Atmo-s. Ocean. Opt. 8 (10), 1472–1479 (1995).

    Google Scholar 

  49. V. P. Lukin and P. A. Konyaev, “Thermal distortions of focused laser beams in the atmosphere,” Appl. Opt. 24 (3), 415–421 (1985).

    Article  ADS  Google Scholar 

  50. V. P. Lukin, P. A. Konyaev, and V. L. Mironov, “Effectiveness of the ude of adaptive optical systems under radiation self-action in the atmosphere,” Izv. Akad. Nauk SSSR. Ser. Fiz. 49 (3), 536–540 (1985).

    ADS  Google Scholar 

  51. P. A. Konyaev and V. P. Lukin, “Focusing of a high-power laser beam in the course of thermal self-interaction in a moving medium,” Sov. J. Quantum Electron. 18 (2), 217–219 (1988).

    Article  ADS  Google Scholar 

  52. V. E. Zuev, P. A. Konyaev, and V. P. Lukin, “Minimization of atmospheric distortions of optical waves by adaptive optics techniques,” Izv. Vyssh. Ucheb. Zaved. Fiz., No. 11, 6–29 (1985).

  53. P. A. Konyaev, V. P. Lukin, and B. V. Fortes, “Phase Correction of Coherent Beam Nonlinear Distortions in the Atmosphere,” Opt. Atmos. Okeana 1 (4), 71–75 (1988).

    Google Scholar 

  54. P. A. Konyaev, V. P. Lukin, and B. V. Fortes, “Phase correction of nonlinear distortions of a laser beam on a vertical atmospheric path,” Atmos. Ocean. Opt. 3 (12), 1157–1162 (1990).

    Google Scholar 

  55. F. Yu. Kanev, L. N. Lavrinova, and V. P. Lukin, “Dependence of the quality of reconstruction of a phase surface by an adaptive mirror on a number of servodrives and configuration of their disposition,” Atmo-s. Ocean. Opt. 6 (8), 555–558 (1993).

    Google Scholar 

  56. F. Yu. Kanev, L. N. Lavrinova, and V. P. Lukin, “Optimization of a flexible mirror in the problem of compensation of laser beams thermal blooming,” Proc. ICO, 155–160 (1993).

  57. R. Buckley, “Diffraction by a random phase-changing screen: A numerical experiment,” J. Atmos. Terr. Phys. 37, 1431–1446 (1975).

    Article  ADS  Google Scholar 

  58. J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129–160 (1976).

    Article  ADS  Google Scholar 

  59. V. P. Kandidov and V. I. Ledenev, “Use of statistical test method for the study of wave beam propagation in a randomly inhomogeneous medium,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 24, 438 (1981).

    ADS  Google Scholar 

  60. P. A. Konyaev, “Modification of the split method for the numerical solution of quasi-optical problems,” in Abstr. VII All-Union Symposium on Laser Radiation Propagation in the Atmosphere (IAO SB AS USSR, Tomsk, 1983) [in Russian].

  61. J. M. Martin and S. M. Flatte, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2117 (1988).

    Article  ADS  Google Scholar 

  62. V. V. Bykov, Numerical Simulation in Statistical Radio-engineering (Sov. radio, Moscow, 1971.

  63. S. A. Collins and D. Duncan, J. Opt. Soc. Am. 65, 1218–1236 (1975).

    ADS  Google Scholar 

  64. D. D. Duncan and S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 65, 1232–1240 (1975).

    Google Scholar 

  65. S. S. Chesnokov and I. E. Tel’pukhovskii, “Limiting possibilities of adaptive correction of wind refraction based on the modal control,” Atmos. Ocean. Opt. 4 (12), 890–895 (1991).

    Google Scholar 

  66. B. V. Fortes and V. P. Lukin, “Phase correction of an image turbulence broadening under conditions of strong intensity fluctuations,” Proc. SPIE—Int. Soc. Opt. Eng. 1668, 477–488 (1992).

  67. P. A. Konyaev, Candidate’s Dissertation in Mathematics and Physics (Tomsk State University, Tomsk, 1984).

  68. B. V. Fortes, F. Yu. Kanev, P. A. Konyaev, and V. P. Lukin, “Potential capabilities of adaptive optical systems in the atmosphere,” J. Opt. Soc. Am. A 11 (2), 903–907 (1994).

    Article  ADS  Google Scholar 

  69. V. P. Lukin, “Limiting capabilities of adaptive optical systems in the atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 1543, 337–343 (1991).

  70. V. P. Lukin and B. V. Fortes, Adaptive formation of Beams and Images in the Atmosphere (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  71. B. V. Fortes, F. Yu. Kanev, P. A. Konyaev, and V. P. Lukin, “Four-dimensional computer dynamic model of atmospheric optical systems,” Proc. SPIE—Int. Soc. Opt. Eng. 2222, 522–526 (1994).

  72. V. P. Lukin, F. Yu. Kanev, P. A. Konyaev, and B. V. Fortes, “Numerical model of atmospheric adaptive optical system. I. Laser beam propagation in the atmosphere,” Atmos. Ocean. Opt. 8 (3), 409–418 (1995).

    Google Scholar 

  73. V. P. Lukin, F. Yu. Kanev, P. A. Konyaev, and B. V. Fortes, “Numerical model of an atmospheric adaptive optical system. II. Wave-front sensors and control elements,” Atmos. Ocean. Opt. 8 (3), 419–428 (1995).

    Google Scholar 

  74. V. P. Lukin, F. Yu. Kanev, P. A. Konyaev, and B. V. Fortes, “Numerical model of atmospheric adaptive optical system. III. A computer version of the model,” Atmos. Ocean. Opt. 8 (3), 429–434 (1995).

    Google Scholar 

  75. V. P. Lukin, “Computer modeling of adaptive optics & sites for telescope design,” Proc. OSA Tech. Proc, No. 54, 373–378 (1996).

  76. V. P. Lukin and B. V. Fortes, “Partial phase correction of turbulent distortions in telescope AST-10,” Appl. Opt. 37 (21), 4561–4568 (1998).

    Article  ADS  Google Scholar 

  77. V. P. Lukin and B. V. Fortes, “Ground-based spatial interferometers and atmospheric turbulence,” Pure Appl. Opt. 5 (1), 1–11 (1996).

    Article  Google Scholar 

  78. V. P. Lukin and B. V. Fortes, “Ground-based spatial phase interferometers and atmospheric turbulence,” Astronom. Zh. 73 (3), 419–425 (1996).

    Google Scholar 

  79. V. P. Lukin, O. N. Emaleev, and A. I. Petrov, “Study of optical parameters in an aircraft wake,” in Proc. VII International Symposium “Atmospheric and Ocean Optics” (Tomsk, 2000), p. 119–123 [in Russian].

  80. G. Ricort, C. Aime, C. Roddier, and J. Borgino, “Adaptive optics for solar telescopes,” Sol. Phys. 69, 223–231 (1981).

    Article  ADS  Google Scholar 

  81. O. Luhe, A. L. Widener, T. Rimmele, G. Spence, R. Dunn, and P. Wiborg, “Solar-feature correlation tracker for ground-based telescopes,” Astron. Astrophys. 224, 351–360 (1989).

    ADS  Google Scholar 

  82. O. Von Der Luhe, “Image quality in high-resolution and high-cadence solar imaging,” Adv. Spac. Res 11 (5), 275–286 (1991).

    Article  ADS  Google Scholar 

  83. D. S. Acton and R. C. Smithson, “Solar imaging with a segmented adaptive mirror,” Appl. Opt. 31, 3161–3172 (1992).

    Article  ADS  Google Scholar 

  84. B. G. Scharmera, P. Dettori, G. Mats, M. G. Lofdahl, and M. Shandb, “Adaptive optics for the New Swedish Solar Telescope,” Proc. SPIE—Int. Soc. Opt. Eng. 4853, 370–382 (2002).

  85. L. V. Didkovsky, A. Dolgushyn, W. Marquette, J. Nenow, J. Varsik, R. R. Goode, S. L. Hegwer, D. Ren, S. Fletcher, Th. Rimmele, J. Carsten, and H. Wang, “High-spatial-resolution imaging combining high-order adaptive optics, frame selection, and speckle masking reconstruction,” Proc. SPIE—Int. Soc. Opt. Eng. 4853, 630 (2002).

  86. T. R. Rimmele, “Recent advances in solar adaptive optics,” Proc. SPIE—Int. Soc. Opt. Eng. 5490, 549004 (2004).

  87. V. P. Lukin, B. V. Fortes, L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, L. N. Lavrinova, A. I. Petrov, A. P. Yankov, A. V. Bulatov, P. G. Kovadlo, and N. M. Firstova, “Experimental setup of adaptive optical system for LSVT. I. Testing results and perspectives,” Atmos. Ocean. Opt. 12 (12), 1107–1110 (1999).

    Google Scholar 

  88. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, L. N. Lavrinova, V. P. Lukin, A. I. Petrov, B. V. Fortes, and A. P. Yankov, “Experimental adaptive-optics system for Big Solar Vacuum Telescope. II. Efficiency of stabilization of a solar disk fragment image on the entrance slit of a spectrograph,” Atmos. Ocean. Opt. 13 (4), 388–391 (2000).

    Google Scholar 

  89. L. V. Antoshkin, A. B. Borovik, N. N. Botygina, A. V. Bulatov, O. N. Emaleev, N. M. Firslova, B. V. Fortes, V. M. Grigoryev, P. G. Kovadlo, L. N. Larinova, V. P. Lukin, A. I. Petrov, V. I. Skomorovsky, and A. P. Yankov, “First-order adaptive system for correction of images in solar ground-based telescopes,” Adaptive Opt. Syst. Tech. 4007, 232–238 (2000).

    Article  ADS  Google Scholar 

  90. N. Botugina, O. Emallev, P. Konyaev, V. Lukin, L. Antoshkin, and A. Yankov, “Adaptive system for solar telescope,” Proc. SPIE—Int. Soc. Opt. Eng. 4493 (2001).

  91. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. G. Kovadlo, P. A. Konyaev, V. P. Lukin, A. I. Petrov, and A. P. Yankov, “Adaptive optics system with a correlation detector of image displacements,” Atmos. Ocean. Opt. 15 (11), 934–937 (2002).

    Google Scholar 

  92. L. V. Antoshkin, N. N. Botugina, O. N. Emallev, and V. P. Lukin, “Problems of design of adaptive solar telescope,” Proc. SPIE—Int. Soc. Opt. Eng. 4900, 20–27 (2002).

  93. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, V. M. Grigor’ev, P. A. Konyaev, P. G. Kovadlo, V. P. Lukin, V. I. Skomorovskii, and A. P. Yankov, “Development and investigation of an adaptive optical system for solar telescopes,” Avtometriya 39 (5), 65–75 (2003).

    Google Scholar 

  94. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. G. Kovadlo, P. A. Konyaev, V. V. Lavrinov, and V. P. Lukin, “Adaptive system of correction for the image jitter using a modified correlation sensor,” Atmos. Ocean. Opt. 18 (12), 969–974 (2005).

    Google Scholar 

  95. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, V. M. Grigor’ev, P. A. Konyaev, P. G. Kovadlo, V. P. Lukin, V. I. Skomorovskii, and A. P. Yankov, “Adaptive optical system for a ground-based solar telescope,” J. Opt. Technol. 73 (3), 197–201 (2006).

    Article  Google Scholar 

  96. P. A. Konyaev, O. N. Emaleev, N. N. Botugina, V. M. Grigir’ev, P. G. Kovadlo, V. P. Lukin, L. V. Antoshkin, V. I. Skomorovski, and A. P. Yankov, “Modified correlation tracking algorithm for tip-tilt correction system and project ANGARA on the Big Solar Vacuum Telescope,” Proc. SPIE—Int. Soc. Opt. Eng. 6272, 62725 (2006).

  97. V. M. Grigor’ev, V. P. Lukin, L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. A. Konyaev, P. G. Kovadlo, and V. I. Skomorovskii, “Tests of the adaptive optical system with a modified correlation sensor at the Big Solar Vacuum Telescope,” Proc. SPIE—Int. Soc. Opt. Eng. 7108, 7108 (2008).

  98. V. M. Grigor’ev, V. P. Lukin, L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. A. Konyaev, P. G. Kovadlo, V. V. Nosov, V. I. Skomorovskii, and A. V. Torgaev, “Applicability of adaptive optics for solar telescopes,” Atmos. Ocean. Opt. 22 (3), 370–382 (2009).

    Article  Google Scholar 

  99. N. N. Botygina, O. N. Emaleev, P. A. Konyaev, and V. P. Lukin, “Wavefront sensors and algorithms for adaptive optical systems,” Proc. SPIE—Int. Soc. Opt. Eng. 7736, 773659–1 (2010).

  100. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. G. Kovadlo, P. A. Konyaev, E. A. Kopylov, V. P. Lukin, V. I. Skomorovskii, V. D. Trifonov, and S. A. Chuprakov, RF Utility Model Patent No. 11169 (2011).

  101. V. P. Lukin, N. N. Botygina, O. N. Emaleev, L. V. Antoshkin, and P. A. Konyaev, “Image quality analyzer,” Datchiki Sistemy, No. 6, 12–14 (2012).

    Google Scholar 

  102. V. P. Lukin, V. M. Grigor’ev, L. V. Antoshkin, N. N. Botugina, O. N. Emaleev, P. G. Kovadlo, P. A. Konyaev, E. A. Kopylov, V. I. Skomorovski, V. D. Trifonov, and S. A. Chuprakov, “Development of adaptive optics elements for solar telescope,” Proc. SPIE—Int. Soc. Opt. Eng. 8447, 84476 (2012).

  103. L. V. Antoshkin, N. N. Botugina, L. A. Bolbasova, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, P. G. Kovadlo, D. Yu. Kolobov, A. V. Kudryashov, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, S. A. Chuprakov, A. A. Selin, and A. Yu. Shikhovtsev, “Adaptive optics system for solar telescope operating under strong atmospheric turbulence,” Atmos. Ocean. Opt. 30 (3), 291–299 (2017).

    Article  Google Scholar 

  104. N. N. Botygina, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, and V. P. Lukin, “Development of components for adaptive optics systems for solar telescopes,” Atmos. Ocean. Opt. 31 (2), 216–224 (2018).

    Article  Google Scholar 

  105. N. N. Botygina, D. Yu. Kolobov, P. G. Kovadlo, V. P. Lukin, S. A. Chuprakov, and A. Yu. Shikhovtcev, “"The first light” for the system of inputting the elements of AO into the optical path of LSVT,” Proc. SPIE—Int. Soc. Opt. Eng. 10833 (2018).

  106. V. P. Lukin and B. V. Fortes, “The influence of wavefront dislocations on phase conjugation instability at thermal blooming compensation,” Proc. OSA Tech. Proc, No. 54, 185–190 (1996).

  107. V. P. Lukin and B. V. Fortes, “The influence of wavefront dislocations on phase conjugation instability at thermal blooming compensation,” Pure Appl. Opt. 6, 103–116 (1997).

    Article  ADS  Google Scholar 

  108. V. P. Lukin and B. V. Fortes, “Estimation of turbulent degradation and required spatial resolution of adaptive systems,” Proc. SPIE—Int. Soc. Opt. Eng. 3494, 191–202 (1998).

  109. P. A. Konyaev and V. P. Lukin, “Computation algorithms for simulation in atmospheric optics,” Appl. Opt. 55 (12), B107–B112 (2016).

    Article  Google Scholar 

  110. V. P. Lukin and B. V. Fortes, “Phase-correction of turbulent distortions of an optical wave propagating under strong intensity fluctuations,” Appl. Opt. 41 (27), 5616–5624 (2002).

    Article  ADS  Google Scholar 

  111. R. A. Humphres, L. C. Bradley, and J. Herrmann, “Sodium-layer synthetic beacon for adaptive optics,” Lincoln Lab. J., 45–66 (1992).

  112. F. Yu. Kanev, V. P. Lukin, and N. A. Makenova, “Algorithm for phasing a segmented mirror,” Atmos. Ocean. Opt. 16 (12), 991–995 (2003).

    Google Scholar 

  113. F. Y. Kanev, V. P. Lukin, and N. Makenova, “Algorithm for phasing a segmented mirror,” Proc. SPIE—Int. Soc. Opt. Eng. 5490, 1556–1563 (2004).

  114. F. Yu. Kanev and V. P. Lukin, “Amplitude phase beam control with 1991. the help of a two-mirror adaptive system,” Atmos. Ocean. Opt. 4 (12), 878–881 (1991).

    Google Scholar 

  115. F. Y. Kanev, V. P. Lukin, and N. Makenova, “Amplitude-phase control of a laser beam in a two-mirror adaptive system,” Proc. SPIE. 5572, 310-318 (2004).

    Article  ADS  Google Scholar 

  116. F. Yu. Kanev, V. P. Lukin, N. A. Makenova, and E. I. Moisei, “New algorithm of formation of the required amplitude distribution under the phase control. Improving the efficiency of a two-mirror adaptive system,” Atmos. Ocean. Opt. 21 (4), 321–326 (2008).

    Google Scholar 

  117. V. P. Lukin, S. M. Gubkin, O. N. Emaleev, N. G. Mutnitskii, and V. V. Pokasov, “Experimental study of astroclimate parameters of the Elbrus region,” Astronom. Zh. 60 (4), 789–794 (1983).

    ADS  Google Scholar 

  118. V. P. Lukin, “Optical measurements of the outer scale of the atmospheric turbulence,” Atmos. Ocean. Opt. 5 (4), 229–242 (1992).

    Google Scholar 

  119. V. P. Lukin, “Investigation of some peculiarities in the structure of large-scale atmospheric turbulence,” Atmo-s. Ocean. Opt. 5 (12), 834–840 (1992).

    Google Scholar 

  120. V. P. Lukin, “Optical measurements of the outer scale of the atmospheric turbulence,” Proc. OSA. Digest Ser 19, 75–89 (1992).

  121. V. P. Lukin, ”Intercomparison of models of the atmospheric turbulence spectrum,” Atmos. Ocean. Opt. 6 (9), 628–631 (1993).

    ADS  Google Scholar 

  122. V. P. Lukin, “Comparison of the spectral model of atmospheric turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 2222, 527–535 (1994).

  123. V. P. Lukin, ”Models of the atmosphere and adaptive optoelectronics systems (the use of atmospheric models by modern optoelectronic systems),” Atmos. Ocean. Opt. 10 (4-5), 322–336 (1997).

    Google Scholar 

  124. V. P. Lukin, E. V. Nosov, and B. V. Fortes, “The efficient outer scale of atmospheric turbulence,” Atmos. Ocean. Opt. 10 (2), 100–106 (1997).

    Google Scholar 

  125. L. V. Antoshkin, N. V. Goleneva, V. V. Lavrinov, and L. N. Lavrinova, “Method of calculating the cross-wind speed at the entrance aperture of an adaptive system based on Shack–Hartmann wavefront sensor measurements,” Autom. Honit. Meas. (Engl. Transl.) 51 (6), 587–592 (2015).

  126. V. P. Lukin, V. V. Nosov, and E. V. Nosov, “Effect of underlying terrain on jitter of astronomic images,” Proc. SPIE—Int. Soc. Opt. Eng. 5489, 235–244 (2004).

  127. V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE—Int. Soc. Opt. Eng. 5743, 110–130 (2004).

  128. V. V. Nosov, O. N. Emaleev, E. V. Nosov, and V. P. Lukin, “Semiempirical hypotheses of turbulence theory in the anisotropic boundary layer,” Atmos. Ocean. Opt. 18 (10), 756–773 (2005).

    Google Scholar 

  129. V. V. Nosov, E. V. Nosov, and A. V. Torgaev, “Coherent structures in a turbulent atmosphere,” in Simulation of Nonlinear Processes and Systems (STANKIN, Moscow, 2008), p. 157–160 [in Russian].

    Google Scholar 

  130. V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Result of measurements of A.M. Kolmogorov and A.M. Obukhov constants in the Kolmogorov–Obukhov law,” Proc. SPIE—Int. Soc. Opt. Eng. 7296, 70–76 (2008).

  131. V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Decrease of the light wave fluctuations in the coherent turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 7296, 77–81 (2008).

  132. V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Structural function of temperature fluctuations in coherent turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 7296, 94–96 (2008).

  133. V. V. Nosov, V. M. Grigoriev, V. P. Lukin, P. G. Kovadlo, and A. V. Torgaev, “Astroclimate paramaters of the surface layer in the Sayan solar observatory,” Proc. SPIE—Int. Soc. Opt. Eng. 7296, 87–93 (2008).

  134. V. V. Nosov, V. M. Grigoriev, V. P. Lukin, P. G. Kovadlo, and A. V. Torgaev, “Results of measurements of the astroclimate characteristics of the astronomical telescopes in the mountains observatories,” Proc. SPIE—Int. Soc. Opt. Eng. 7296, 82–86 (2008).

  135. V. V. Nosov, V. M. Grigor’ev, V. P. Lukin, P. G. Kovadlo, E. V. Nosov, and A. V. Torgaev, “Coherent structures in a turbulent atmosphere. Experiment and theory,” Solnechno-Zemnaya Fiz., No. 14, 97–113 (2009).

  136. V. V. Nosov, P. G. Kovadlo, V. P. Lukin, and A. V. Torgaev, “Coherent turbulence in a mountain valley,” in Proc. II All-Russian Scientific Engineering Conference “Problems of military geophysics and environmental control” (Mozhaiskii Military Space Academy, SPb., 2012), vol. 1, p. 203–210 [in Russian].

  137. V. V. Nosov, V. P. Lukin, and A. V. Torgaev, “Decrease in fluctuations of optical waves in a coherent turbulence,” in Proc. II All-Russian Scientific Engineering Conference “Problems of military geophysics and environmental control” (Mozhaiskii Military Space Academy, SPb., 2012), vol. 1, p. 211–217 [in Russian].

  138. V. V. Nosov, P. G. Kovadlo, V. P. Lukin, and A. V. Torgaev, “Atmospheric coherent turbulence,” Atmos. Ocean. Opt. 26 (3), 201–206 (2013).

    Article  Google Scholar 

  139. V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulence scales of the Monin–Obukhiv similarity theory in anisotropic boundary layer,” in Abstr. of International Conference “Turbulence and dynamics of the atmosphere and climate” (GEOS, Moscow, 2013), p. 38–43 [in Russian].

  140. V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent components of turbulence,” Abstr. of International Conference “Turbulence and dynamics of the atmosphere and climate” (GEOS, Moscow, 2013), p. 43–47 [in Russian].

  141. V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, Optical Properties of Turbulence in the Atmospheric Boundary Layer in Mountains (Publishing House of SB RAS, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  142. V. P. Lukin, V. V. Nosov, P. G. Kovadlo, E. V. Nosov, and A. V. Torgaev, “Causes of non-Kolmogorov turbulence in the atmosphere,” Appl. Opt. 55 (12), B163–B168 (2016).

    Article  Google Scholar 

  143. S. P. Il’yasov, V. P. Lukin, V. V. Nosov, S. L. Odintsov, and Yu. A. Tillaev, “The study of astroclimate of the South Siberia and Central Asia regions,” Opt. Atmos. Okeana 22 (10), 973–980 (2009).

    Google Scholar 

  144. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, L. N. Lavrinova, and V. P. Lukin, “Differential optical meter of the parameters of atmospheric turbulence,” Atmos. Ocean. Opt. 11 (11), 1046–1050 (1998).

    Google Scholar 

  145. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. A. Konyaev, and V. P. Lukin, “Path-averaged differential meter of atmospheric turbulence parameters,” Opt. Spectrosc. 109 (4), 635–640 (2010).

    Article  ADS  Google Scholar 

  146. V. V. Nosov, A. V. Torgaev, L. A. Bol’basova, and V. P. Lukin, “Techniques for simultaneous measurement of the Fried length and effective outer turbulence scale in the atmosphere,” Abstr. of International Conference “Turbulence and dynamics of the atmosphere and climate” (GEOS, Moscow, 2013), p. 37–38 [in Russian].

  147. L. V. Antoshkin, V. V. Lavrinov, L. N. Lavrinova, and V. P. Lukin, “Measurement of the wind drift of atmospheric turbulence based on a Shack–Hartmann sensor,” Gornyi Informatsionno-Analiticheskii Byul. 17 (12), 129–133 (2009).

    Google Scholar 

  148. L. V. Antoshkin, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, and M. V. Tuev, “Peculiarities of forestalling correction of the turbulent distortions according to measurements of the Shack-Hartmann sensor,” Atm-os. Oceanic Opt. 24 (3), 313–318 (2011).

    Article  Google Scholar 

  149. V. P. Lukin and O. N. Emaleev, “Correction of random angular displacements of optical beams,” Sov. J. Quantum Electron. 10 (6), 727–731 (1980).

    Article  Google Scholar 

  150. V. P. Lukin and V. F. Matyukhin, “Adaptive correction of images,” Sov. J. Quantum Electron. 13 (12), 1604–1609 (1983).

    Article  ADS  Google Scholar 

  151. V. P. Lukin, V. F. Matyukhin, and Yu. P. Shilokhvost, Special Author Certificate No. 217315 (1984).

  152. L. A. Bol’basova and V. P. Lukin, “Laser guide stars and models of atmospheric turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 6936, 123–129 (2007).

  153. L. A. Bolbasova, A. Goncharov, and V. Lukin, “Field-oriented wavefront sensor for laser guide stars,” in Adaptive Optics for Industry and Medicine (Imperial College Press, London, UK, 2008).

    Google Scholar 

  154. L. A. Bol’basova and V. P. Lukin, “Modal isoplanatism of phase fluctuations,” Atmos Ocean. Opt. 21 (12), 934–938 (2008).

    Google Scholar 

  155. D. Bonaccini, L. Bolbasova, A. Goncharov, and V. Lukin, “AO with LGS and mesospheric layer sensing,” Proc. SPIE—Int. Soc. Opt. Eng. 7015, 70152 (2008).

  156. L. A. Bol’basova, V. P. Lukin, and V. V. Nosov, “Image jitter of a laser guide star in a monostatic formation scheme,” Opt. Spectrosc. 107 (6), 993 (2009).

    Article  ADS  Google Scholar 

  157. L. A. Bolbasova, V. P. Lukin, and V. V. Nosov, “Residual tip-tilt motion of LGS in monostatic scheme,” Proc. SPIE—Int. Soc. Opt. Eng. 7736, 77362 (2010).

  158. L. A. Bolbasova and V. P. Lukin, Adaptive Correction of Atmospheric Distortions of Optical Images on the Basis of an Artificial Reference Source (Fiziko-matematicheskaya literatura, Moscow, 2012) [in Russian].

  159. E. A. Kopylov, V. V. Lavrinov, V. P. Lukin, and A. A. Selin, “Methods of image correction formed on horizontal long paths,” Proc. SPIE—Int. Soc. Opt. Eng. 10677, 106773 (2018).

  160. L. V. Antoshkin and A. G. Borzilov, RF Utility Model Patent No. 181166 (2018).

  161. A. Goncharov, M. Owner-Peterson, T. Anderson, and V. P. Lukin, “The effective outer scale estimation for Euro50 Site,” Proc. SPIE—Int. Soc. Opt. Eng. 5026, 112–118 (2002).

Download references

ACKNOWLEDGMENTS

We are grateful for the longstanding collaborative work to Dr. Sci. (Phys.–Math.) V.A. Tartakovskii, research scientist V.A. Sennikov, engineer A.P. Yankov, as well as to specialists recently employed in the laboratory: chief engineer A.G. Borzilov, engineers A.A. Selin and I.M. Tsoroev and maintenance engineers E.L. Soin, M.V. Kazakov, D.V. Kucherenko, and I.D. Veretekhin. We wish them successful completion of their course of studies and their addition to our team in the near future.

Funding

This work was supported by project no. AAAA-A17-117021310146-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Lukin or L. A. Bolbasova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukin, V.P., Antoshkin, L.V., Bolbasova, L.A. et al. The History of the Development and Genesis of Works on Adaptive Optics at the Institute of Atmospheric Optics. Atmos Ocean Opt 33, 85–103 (2020). https://doi.org/10.1134/S1024856020010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020010078

Keywords:

Navigation