Skip to main content
Log in

Variability of Sunlight Duration in Tomsk in 1961–2018

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Variations in the sunlight duration (SLD) in Tomsk are analyzed for the period from 1961 to 2018 and separately for 1961–1990 and 1981–2010. Data on clouds and total solar radiation obtained at the TOR-station of IAO SB RAS in 1996–2018 are used. The actual long-term monthly mean SLD ranges from 44 h in December to 317 h in June–July. The analysis of the long-term variation in SLD shows its increase from 1961 to 1989 and its decrease starting from 1999 due to an increase in the low cloud cover and high frequency of continuous clouds. The SLD in Tomsk in the modern period has increased relative to the historical period. Regression equations between SLD and the total solar radiation (Q) are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. Lean, “The Sun’s variable radiation and its relevance for Earth,” Ann. Rev. Astrophys. 35 (1), 33–67 (1997).

    Article  ADS  Google Scholar 

  2. J.-L. Le Moue, E. Blanter, M. Shnirman, and V. Courtillot, “Evidence for solar forcing in variability of temperatures and pressures in Europe,” J. Atmos. Sol.-Terr. Phys. 71 (12), 1309–1321 (2009).

    Article  ADS  Google Scholar 

  3. O. Coddington, J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, “A solar irradiance climate data record,” Bull. Am. Math. Soc. 97 (7), 1265–1282 (2016).

    Article  Google Scholar 

  4. S. Kato, “Interannual variability of the global radiation budget,” J. Clim. 22 (18), 4893–4907 (2009).

    Article  ADS  Google Scholar 

  5. K. Kodera, R. Thieblemont, S. Yukimoto, and K. Matthes, “How can we understand the global distribution of the solar cycle signal on the Earth’s surface?,” Atm-os. Chem. Phys. 16 (20), 12925–12944 (2016).

    Article  ADS  Google Scholar 

  6. W. Soon and D. R. Legates, “Solar irradiance modulation of equator-to-pole (Arctic) temperature gradients: Empirical evidence for climate variation on multi-decadal timescales,” J. Atmos. Sol.-Terr. Phys. 93, 45–56 (2013).

    Article  ADS  Google Scholar 

  7. K. Bakirci, “Prediction of global solar radiation and comparison with satellite data,” J. Atmos. Sol.-Terr. Phys. 152, 41–49 (2017).

    Article  ADS  Google Scholar 

  8. E. I. Khlebnikova and I. A. Sal’, “Regional climate changes in the main components of the radiation budget of the Earth’s surface on the Russian territory,” Trudy GGO. No. 570, 34–49 (2014).

  9. E. L. Makhotkina and I. N. Plakhina, “Air transparency monitoring: Measurement results for last decades,” Trudy GGO. No. 572, 57–88 (2014).

  10. Yu. M. Timofeev and E. M. Shul’gina, “Russian investigations in the field of atmospheric radiation in 2011–2014,” Izv. Atmos. Ocean. Phys. 52 (5), 467–482 (2016).

    Article  Google Scholar 

  11. V. de Bock, H. de Backer, R. van Malderen, A. Mangold, and A. Delcloo, “Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium,” Atmos. Chem. Phys. 14 (22), 12251–12270 (2014).

    Article  ADS  Google Scholar 

  12. K. Cizkova, K. Laska, L. Metelka, and M. Stanek, “Reconstruction and analysis of erythemal UV radiation time series from Hradec Kralove (Czech Republic) over the past 50 years,” Atmos. Chem. Phys. 18 (3), 1805–1818 (2018).

    Article  ADS  Google Scholar 

  13. B. Pittock, “Can solar variations explain variations in the Earth’s climate?,” Clim. Change 96 (4), 483–487 (2009).

    Article  ADS  Google Scholar 

  14. V. A. Golovko, “Energy aspects of Earth’s climate measurements: A view from space,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (5), 140–154 (2012).

    Google Scholar 

  15. Survey of Possibilities, Ed. by B.V. Lukutin (NTL, Tomsk, 2002) [in Russian].

    Google Scholar 

  16. S. I. Sivkov, Techniques for Calculation of Solar Radiation Characteristics (Gidrometeoizdat, Leningrad, 1968) [in Russian]

    Google Scholar 

  17. D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlestin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 years of the tropospheric ozone research station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Ocean. Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

  18. T. K. Sklyadneva, T. M. Rasskazchikova, V. G. Arshinova, and M. Yu. Arshinov, “Changes in radiation and meteorological parameters of the atmosphere from observation data in Tomsk,” Opt. Atmos. Okeana 31 (4), 288–293 (2018).

    Google Scholar 

  19. X. Xia, “Significant decreasing cloud cover during 1954–2005 due to more clear-sky days and less overcast days in china and its relation to aerosol,” Ann. Geophys. 30 (3), 573–582 (2012).

    Article  ADS  Google Scholar 

  20. D. Mateos, A. di Sarra, D. Meloni, C. di Biagio, and D. M. Sferlazzo, “Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects,” J. Atmos. Sol.-Terr. Phys. 73 (13), 1739–1746 (2011).

    Article  ADS  Google Scholar 

  21. M. E.-N. Adam and E. A. Ahmed, “Comparative analysis of cloud effects on ultraviolet-B and broadband solar radiation: Dependence on cloud amount and solar zenith angle,” Atmos. Res 168, 149–157 (2016).

    Article  Google Scholar 

  22. M. Kulmala, T. Suni, K. E. J. Lehtinen, MasoM. Dal, M. Boy, A. Reissell, U. Rannik, P. Aalto, P. Keronen, H. Hakola, J. Back, T. Hoffmann, T. Vesala, and P. Hari, “A new feedback mechanism linking forests, aerosols, and climate,” Atmos. Chem. Phys. 4 (2), 557–562 (2004).

    Article  ADS  Google Scholar 

  23. M. Kulmala, T. Nieminen, R. Chellapermal, R. Makkonen, J. Back, and V.-M. Kerminen, “Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems,” in Biology, Controls and Model Tree Volatile Organic Compound Emissions, Ed. by U. Niinemets and R.K. Monson (Springer, Dordrecht, 2010).

    Google Scholar 

  24. M. Kulmala, T. Nieminen, A. Nikandrova, K. Lehtipalo, H. E. Manninen, M. K. Kajos, P. Kolari, A. Lauri, T. Petaja, R. Krejci, H.-C. Hansson, E. Swietlicki, A. Lindroth, T. R. Christensen, A. Arneth, P. Hari, J. Back, T. Vesala, and V.-M. Kerminen, “CO2-induced terrestrial feedback mechanism: From carbon sink to aerosol source and back,” Boreal Environ. Res. 19 (2014).

  25. E. Ezhova, I. Ylivinkka, J. Kuusk, K. Komsaare, M. Vana, A. Krasnova, S. Noe, M. Arshinov, B. Belan, S. Park, J. Lavric, M. Heimann, P. Kolari, T. Petaja, P. Hari, T. Vesala, J. Back, U. Rannik, V.-M. Kerminen, and M. Kulmala, “Direct effect of aerosols on solar radiation and gross primary production in boreal forest,” Atmos. Chem. Phys. 18 (24), 17 863–17 881 (2018).

    Article  Google Scholar 

  26. The Second Roshydromet Estimation Report about Climate Change and Its Consequences on the Russian Territory. Vol. 1 (Roshydromet, Moscow, 2014) [in Russian].

  27. E. I. Khlebnikova, E. L. Mahotkina, and I. A. Sall’, “Clouds and Radiation Conditions on the Russian territory: Climate changes observed,” Trudy GGO. No. 573, 65–91 (2014).

  28. E. V. Gorbarenko, ”Climate changes in atmospheric radiation parameters from the MSU meteorological observatory data,” Rus. Meteorol. Hydrol. 41 (11–12), 789–797 (2016).

    Article  Google Scholar 

  29. E. V. Gorbarenko, ”Sunshine variability in Moscow in 1955–2017,” Rus. Meteorol. Hydrol. 44 (6), 384–393 (2019).

    Article  Google Scholar 

Download references

Funding

The study was carried out under the financial support of the Russian Science Foundation (grant no. 17-17-01095) with the use of IAO SB RAS infrastructure created and operated under State Assignment no. AAAA-A17-117021310142-5, including the “Atmosfera” Common Use Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. K. Sklyadneva or B. D. Belan.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sklyadneva, T.K., Belan, B.D. Variability of Sunlight Duration in Tomsk in 1961–2018. Atmos Ocean Opt 33, 254–259 (2020). https://doi.org/10.1134/S1024856020030112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020030112

Keywords:

Navigation