Skip to main content
Log in

Capabilities of a Turbulent BSE-Lidar for the Study of the Atmospheric Boundary Layer

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

In order to study the capabilities of a turbulent lidar, an experiment was carried out with a BSE-4 system, a meteorological measuring system, and an MTP-5 temperature profiler. The profile of the structural parameter of the refractive index \(C_{n}^{2}\) was determined with the lidar with a 15-s interval up to an altitude of 2 km. The dynamic turbulence strength was measured over rough terrain when the wind increased. Lidar operation under buoyant convection conditions allowed us to observe the rise of thermals and the formation of Cu clouds in the atmospheric boundary layer. Under the conditions of cellular convection, the lidar recorded quasi-periodic oscillations of \(C_{n}^{2}\) (Benard cells), which represented a stationary wave. Under stable temperature stratification, when the Richardson number was less than 1/4, the turbulent lidar detected a Kelvin–Helmholtz wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, Invention Certificate No. 359, Byull. Izobret., No. 21 (1989).

  2. A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “Backscatter enhancement on bodies placed in a randomly inhomogeneous medium,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 16 (7), 1064–1070 (1973).

    Google Scholar 

  3. Yu. A. Kravtsov and A. I. Saichev, ““Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp. 25, 494–508 (1982)

    Article  ADS  Google Scholar 

  4. A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv. Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

    Article  Google Scholar 

  5. A. S. Gurvich, “Lidar positioning of higher clear-air turbulence regions,” Izv., Atmos. Ocean. Phys. 50 (2), 143–151 (2014).

    Article  Google Scholar 

  6. V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016).

    Article  ADS  Google Scholar 

  7. I. A. Razenkov, “Turbulent lidar: I—Design,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).

    Article  Google Scholar 

  8. I. A. Razenkov, V. A. Banakh, and E. V. Gordeev, “Lidar “BSE-4” for the atmospheric turbulence measurements,” Proc. SPIE—Int. Soc. Opt. Eng. (2018). https://doi.org/10.1117/12.2505183

  9. I. A. Razenkov, A. I. Nadeev, N. G. Zaitsev, and E. V. Gordeev, “Turbulent UV Lidar BSE-5,” Atmos. Ocean. Opt. 33 (4), 406–414 (2020).

    Article  Google Scholar 

  10. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. I. A. Razenkov, “Experimental estimation of the backscatter enhancement peak,” Atmos. Ocean. Opt. 34 (2), 112–117 (2021).

    Article  Google Scholar 

  12. V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I—Equations,” Atmos. Ocean. Opt. 30 (2) 156–161 (2017).

    Article  Google Scholar 

  13. I. A. Razenkov, “Estimation of the turbulence intensity from lidar data,” Atmos. Ocean. Opt. 33 (3), 245–253 (2020).

    Article  Google Scholar 

  14. I. A. Razenkov, “Optimization of parameters of a turbulent lidar,” Atmos. Ocean. Opt. 32 (3), 349–360 (2019).

    Article  Google Scholar 

  15. I. A. Razenkov, “Specifics of sounding the atmospheric boundary layer with a turbulent lidar,” Atmos. Ocean. Opt. 33 (6), 610–615 (2020).

    Article  Google Scholar 

  16. I. A. Razenkov, “Turbulent lidar: II—Experiment,” Atmos. Ocean. Opt. 31 (3) 281–289 (2018).

    Article  Google Scholar 

  17. G. G. Shuster, Deterministic Chaos. Introduction (Mir, Moscow, 1988) [in Russian].

  18. V. V. Nosov, V. P. Lukin, P. G. Kovadlo, E. V. Nosov, and A. V. Torgaev, Optical Properties of a Turbulence in High-Mountain Atmospheric Boundary Layer (Publishing House of Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2016) [in Russian].

  19. V. V. Nosov, “Atmospheric turbulence in the anisotropic boundary layer, in Optical Waves and Laser Beams in the Irregular Atmosphere (Taylor & Francis Group, CRC Press, Boca Raton, London; New York, 2018).

  20. G. G. Gimmestad, D. W. Roberts, J. M. Stewart, and J. W. Wood, “Development of the lidar technique for the profiling optical turbulence,” Opt. Eng. 51 (10) (2012). https://doi.org/10.1117/1.OE.51.10.101713

  21. https://lop.iao.ru/. Cited September 20, 2020.

  22. http://attex.net/RU/mtp5.php. Cited September 20, 2020.

  23. S. M. Shmeter, Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  24. N. P. Shakina, Hydrodynamic Instability in the Atmosphere (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  25. E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, 1975).

    Google Scholar 

  26. J. W. Miles, “On the stability of heterogeneous shear flow,” J. Fluid Mech. 10 (4), 496–509 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. L. Odintsov, “Peculiarities in motion of the lower atmospheric layer at passage of the internal gravity waves,” Atmos. Ocean. Opt. 15 (12), 1026–1030 (2002).

    Google Scholar 

  28. Dynamics of Wave and Exchange Processes in the Atmosphere, Ed. by O.G. Chkhetiani, M.E. Gorbunova, S.N. Kulichkova, and I.A. Repina, “(GEOS, Moscow, 2017) [in Russian].

    Google Scholar 

  29. N. P. Shakina and A. R. Ivanova, Forecast of Meteorological Conditions for Aircraft (TRIADA, Moscow, 2016) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to V.V. Nosov for the useful discussion of the issues of the turbulence structure and Yu.S. Balin for constructive remarks; to the atmospheric acoustics group for the MTP-5 temperature profiler data, and the laboratory of atmospheric composition climatology for prompt provision of meteorological information from the measuring complex of IAO SB RAS.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Razenkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razenkov, I.A. Capabilities of a Turbulent BSE-Lidar for the Study of the Atmospheric Boundary Layer. Atmos Ocean Opt 34, 229–238 (2021). https://doi.org/10.1134/S102485602103012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602103012X

Keywords:

Navigation