Skip to main content
Log in

Changes in the Radial Increment and CO2 Distribution in Larches that Survived the Explosion of the Tunguska Space Body

  • RADIATION AND BIOSPHERE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A photoacoustic technique was used to analyze gas samples vacuum-extracted from larch discs which survived the explosion of a space body in the region of Podkamennaya Tunguska river in 1908. The specificity of СО2 accumulation in tree rings after the catastrophe was revealed, which could affect the dynamics of СО2 emission by tree stems into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. V. Vasilyev, “The Tunguska Meteorite Problem Today,” Planet. Space Sci. 46 (2/3), 129–150 (1998).

    Article  ADS  Google Scholar 

  2. E. I. Parfenova, “Environmental factors of growth of post-catastrophe forest in the region of the Tungusca event,” in Proc. of the Scientitfic-Practical Conference “100th Anniversary of the Tunguska Event (Relay of Generations),” Krasnoyarsk, June 26–30, 2008 (IPK SFU, Krasnoyarsk, 2008), p. 1–5 [in Russian].

  3. E. C. Stern, “A model for thermal radiation from the tunguska airburst,” Icarus 327, 48–59 (2019).

    Article  ADS  Google Scholar 

  4. N. B. Vasil’ev, Yu. A. L’vov, G. F. Plekhanov, L. N. Logunova, E. Ya. Mul’diyarov, V. V. Bibikova, A. E. Volkov, S. L. Kuz’min, E. D. Lapshina, A. I. Papanotidi, Z. M. Sergieva, K. S. Sidorov, I. V. Travinskii, B. I. Shoftel’, and S. S. Shcherbina, “State nature reserve “Tungusskii” (review of main data),” in Tungusska Nature Reserve. Biocoenoses of Northern Taiga and Effects of Extreme Natural Factors. Proc. of the State Nature Reserve “Tungusskii” (Publishing House of Tomsk State University, Tomsk, 2003), is. 1, p. 33–89 [in Russian].

  5. H. Hytteborn, A. A. Maslov, D. I. Nazimova, and L. P. Rysin, “Boreal forests of Eurasia,” in Coniferous Forests (Elsevier, Amsterdam, 2005), Vol. 6.

    Google Scholar 

  6. R. Zhao and D. Hӧlscher, “The concentration and efflux of tree stem CO2 and the role of xylem sap flow,” Front. Biol. China 4 (1), 47–54 (2009).

    Article  Google Scholar 

  7. J. Barba, R. Poyatos, and R. Var, “Automated measurements of greenhouse gases fluxes from tree stems and soils: Magnitudes, patterns and drivers,” Sci. Rep. 9 (4005), 1–13 (2019). https://doi.org/10.1038/s41598-019-39663-8

    Article  Google Scholar 

  8. G. G. Suvorova and E. V. Popova, Photosynthetic Productivity of Coniferous Forest Stands in Irkutsk Region (GEO, Novosibirsk, 2015) [in Russian]. http://www.sifibr.irk.ru/images/publications/suvorova_monogr.pdf.

  9. A. V. Timokhina, A. S. Prokushkin, A. V. Panov, R. A. Kolosov, N. V. Sidenko, I. Lavrich, and M. Khaimann, “Interannual variability of atmospheric CO2 concentrations over central Siberia from ZOTTO data for 2009–2015,” Rus. Meteorol. Hydrol. 43 (5), 288–294 (2018).

    Article  Google Scholar 

  10. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. M. Krekov, A. V. Fofonov, S. I. Babchenko, G. Inoue, T. Machida, Sh. Maksutov, M. Sasakava, and K. Shimoyama, “The dynamics in vertical distribution of greenhouse gases in the atmosphere,” Opt. Atmos. Okeana 25 (12), 1051–1061 (2012).

    Google Scholar 

  11. B. G. Ageev, A. N. Gruzdev, and V. A. Sapozhnikova, “Cyclic variation of residual (CO2 + H2O) and total pressure in conifer stem and woody root tree rings,” J. Sib. Fed. Univ. Biol. 11 (3), 206–217 (2018).

    Article  Google Scholar 

  12. B. G. Ageev, V. A. Sapozhnikova, A. N. Gruzdev, E. A. Golovatskaya, E. A. Dyukarev, and D. A. Savchuk, “Comparison of residual gas characteristics in annual rings of scotch pine trees,” Atmos. Ocean. Opt. 32 (3), 275–283 (2019).

    Article  Google Scholar 

  13. N. G. Abramov, E. A. Arkaev, and A. G. Russkikh, “Study of the fire of 1908 in the region of Tunguska event,” in Tungusska Nature Reserve. Biocoenoses of Northern Taiga and Effects of Extreme Natural Factors. Proc. of the State Nature Reserve “Tungusskii” (Publishing House of Tomsk State University, Tomsk, 2003), is. 1, p. 275–278 [in Russian].

  14. G. F. Plekhanov, E. Ya. Mul’diyarov, G. A. Sal’nikova, and Yu. A. Grishin, “Features of fall and fire in the central region of the Tunguska event,” in Yu.A. L’vov Readings (Biological Institute of Tomsk State University, Tomsk, 1995), p. 178–182 [in Russian].

    Google Scholar 

  15. V. O. Krasavchikov and D. V. Yashkov, “Spatial distribution of traces of the catastrophe fire of 1908,” in Proc. of the Scientitfic-Practical Conference “100th Anniversary of the Tunguska Event (Relay of Generations),” Krasnoyarsk, June 26–30, 2008 (IPK SFU, Krasnoyarsk, 2008), p. 1–11 [in Russian].

  16. I. P. Panyushkina and M. K. Arbatskaya, “Dendrochronological approach to study of flammability of forests in Evenkia (Siberia),” Sibir. Ekolog. Zhurn., No. 2, 167–173 (1999).

  17. V. B. Sapunov and O. V. Polovaya, “Ecological aspects of Tungus phenomena of 1908,” Uchenye Zapiski Ros. Gos. Gidrometeorol. Univ., No. 10, 86–100 (2009).

  18. V. D. Nesvetailo, “About accelerated growth of trees in the region of Tunguska event,” Traces of Space Effect on the Earth (Nauka, Novosibirsk, 1990), p. 165–171 [in Russian].

    Google Scholar 

  19. S. A. Nikolaeva and D. A. Savchuk, “Methods of dendroindication of developing rapid geomorphic processes: An overview,” Izv. Ros. Akad. Nauk. Ser. Geograf. 84 (3), 441–450 (2020). https://doi.org/10.31857/S2587556620030097

    Article  Google Scholar 

  20. E. A. Kasatkina and O. I. Shumilov, “One more puzzle of the Tunguska catastrophe? JETP Lett. 85 (4), 216–219 (2007).

    Article  ADS  Google Scholar 

  21. http://web.snauka.ru/issues/2018/06/87130.

  22. D. E. Khrennikov, A. K. Titov, A. E. Ershov, V. I. Pariev, S. V. Karpov, “On the possibility of through passage of asteroid bodies across the Earth’s atmosphere,” Mon. Not. R. Astron. Soc. 493, 1344–1351 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to the participants of the CAE I.K. Doroshin (Tomsk) and D.V. Yashkov (Novosibirsk) for the provided experimental materials. The authors are especially grateful to A.Yu. Ol’khovatov (Moscow) for initiation of this work.

Funding

The work was supported by the Russian Ministry of Science and Higher Education (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. G. Ageev, V. A. Sapozhnikova or D. A. Savchuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, B.G., Sapozhnikova, V.A. & Savchuk, D.A. Changes in the Radial Increment and CO2 Distribution in Larches that Survived the Explosion of the Tunguska Space Body. Atmos Ocean Opt 34, 366–371 (2021). https://doi.org/10.1134/S1024856021040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021040023

Keywords:

Navigation