Skip to main content
Log in

Technique for Fabricating Ferromagnetic/Silicon Active Devices and Their Transport Properties

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Semiconductor nanowires are unique materials for studying nanoscale phenomena; the possibility of forming silicon nanowires on bulk silicon-on-insulator substrates in a top-down process ensures complete incorporation of this technology into integrated electronic systems. In addition, the use of ferromagnetic contacts in combination with the high quality of ferromagnetic–semiconductor interfaces open up prospects for the use of such structures in spintronics devices, in particular, spin transistors. A simple approach is proposed to create semiconductor nanowire-based active devices, specifically, bottom-gate Schottky-barrier field-effect transistors with a metal (Fe) source and drain synthesized on a silicon-on-insulator substrate and the transport characteristics of the designed transistors are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Riel, L, B.-E. Wernersson, M. Hong, and J. A. del Alamo, MRS Bull. 39, 668 (2014). https://doi.org/10.1557/mrs.2014.137

    Article  CAS  Google Scholar 

  2. X. J. Huang and Y. K. Choi, Sens. Actuators, B 122, 659 (2007). https://doi.org/10.1016/j.snb.2006.06.022

    Article  CAS  Google Scholar 

  3. A. Noy, Adv. Mater. 23, 807 (2011). https://doi.org/10.1002/adma.201003751

    Article  CAS  Google Scholar 

  4. H. Wang, L. A. Zepeda-Ruiz, G. H. Gilmer, and M. Upmanyu, Nat. Commun. 4, 1956 (2013). https://doi.org/10.1038/ncomms2956

    Article  CAS  Google Scholar 

  5. Y. Cui, Z. Zhong, D. Wang, et al., Nano Lett. 3, 149 (2003). https://doi.org/10.1021/nl025875l

    Article  CAS  Google Scholar 

  6. H. Cui, M. Cruz-Correa, F. M. Giardiello, et al., Science 299, 1753 (2003). https://doi.org/10.1126/science.1080313

    Article  CAS  Google Scholar 

  7. F. Allibert, T. Ernst, J. Pretet, et al., Solid-State Electron. 45, 559 (2001). https://doi.org/10.1016/S0038-1101(01)00074-0

    Article  CAS  Google Scholar 

  8. S.-F. Hu, Y.-C. Wu, C.-L. Sung, et al., IEEE Trans. Nanotechnol. 3, 93 (2004). https://doi.org/10.1109/TNANO.2003.820784

    Article  Google Scholar 

  9. S. M. Koo, M. D. Edelstein, Q. Li, et al., Nanotechnology 16, 1482 (2005). https://doi.org/10.1088/0957-4484/16/9/011

    Article  CAS  Google Scholar 

  10. T. Mikolajick, A. Heinzig, and J. Trommer, Phys. Status Solidi RRL 7, 793 (2013). https://doi.org/10.1002/pssr.201307247

    Article  CAS  Google Scholar 

  11. J. P. Colinge, C. W. Lee, A. Afzalian, et al., Nat. Nanotechnol. 5, 225 (2010). https://doi.org/10.1038/nnano.2010.15

    Article  CAS  Google Scholar 

  12. I. A. Yakovlev, S. N. Varnakov, B. A. Belyaev, et al., JETP Lett. 99, 527 (2014). https://doi.org/10.1134/S0021364014090124

    Article  CAS  Google Scholar 

  13. N. V. Volkov, A. S. Tarasov, D. A. Smolyakov, et al., AIP Adv. 7, 015206 (2017). https://doi.org/10.1063/1.4974876

    Article  CAS  Google Scholar 

  14. A. S. Tarasov, M. V. Rautskii, A. V. Lukyanenko, et al., J. Alloys Compd. 688, 1095 (2016). https://doi.org/10.1016/j.jallcom.2016.07.138

    Article  CAS  Google Scholar 

  15. A. S. Tarasov, A. V. Lukyanenko, M. V. Rautskii, et al., Semicond. Sci. Technol. 34, 035024 (2019). https://doi.org/10.1088/1361-6641/ab0327

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out on equipment of the Krasnoyarsk Regional Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, the Presidium of the Russian Academy of Sciences (Program no. 32 “Nanostructures: Physics, Chemistry, Biology, and Fundamentals of Technologies”), and the Russian Foundation for Basic Research, the Government of Krasnoyarsk Territory, and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project no. 18-42-243 022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bondarev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanenko, A.V., Tarasov, A.S., Shanidze, L.V. et al. Technique for Fabricating Ferromagnetic/Silicon Active Devices and Their Transport Properties. J. Surf. Investig. 15, 65–69 (2021). https://doi.org/10.1134/S1027451021010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021010109

Keywords:

Navigation