Skip to main content
Log in

Effects of Iron Doping on Properties of TiO2 Thin Film Prepared by Spin Coating Method

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Thin films of FexTi1–xO2 (x = 0.00, 0.02 and 0.04) and pure titanium dioxide (TiO2) were prepared by spin coating. The coater was set up in the laboratory at a low cost investment. The films were calcined at 450°C for 1 h. For characterization, UV-visible microscopy, scanning electron microscopy, atomic force microscopy and X-ray diffraction were used. UV-visible analysis showed a change in optical absorption and band gap due to Fe doping. Scanning electron microscopy and atomic force microscopy analyses were carried out to determine surface morphology, surface roughness and grain size. The morphological properties also severely changed due to the change in the percentage of Fe in thin TiO2 films. Crystal structure was studied by X-ray diffraction analysis. Doping with Fe increased the optical absorption and decreased the band gap. The grain size decreased with increasing Fe concentration, but the crystallinity of the films decreased. Doping with Fe also increased the surface roughness, which was very good for many applications. The lattice parameters also changed because of the Fe impurity. All results were satisfactory, although the films were prepared by self-developed spin coating system. Some optoelectrophysical and morphological properties were measured, and structural analysis was performed. Fabricating films using simple homemade spin coater can reduce the production cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. H. Ko, Y. C. Lee, and Y. J. Jung, J. Colloid Interface Sci. 283, 482 (2005). https://doi.org/10.1016/j.jcis.2004.09.009

    Article  CAS  Google Scholar 

  2. L. S. Yoong, F. K. Chong, and B. K. Dutta, Energy 34, 1652 (2009). https://doi.org/10.1016/j.energy.2009.07.024

    Article  CAS  Google Scholar 

  3. B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E.-K. Suh, Mater. Charact. 58, 680 (2007). https://doi.org/10.2320/matertrans.M2015366

    Article  CAS  Google Scholar 

  4. A. Hosseini, K. Ç. Içli, M. Özenbaş, and Ç. Erçelebi, Energy Procedia 60, 191 (2014). https://doi.org/10.1016/j.egypro.2014.12.332

    Article  CAS  Google Scholar 

  5. Y. Huang, G. Pandraud, and P. M. Sarro, J. Vac. Sci. Technol., A 31, 01A148 (2013). https://doi.org/10.1116/1.4947586

  6. M. Ouzzine, J. A. Maciá-Agulló, M. A. Lillo-Rodenas, C. Quijada, and A. Linares-Solano, Appl. Catal., B 154, 285 (2014).

    Article  Google Scholar 

  7. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  8. G. Liu, J. C. Yu, G. Q. M. Lu, and H. M. Cheng, Chem. Commun. 47, 6763 (2011).

    Article  CAS  Google Scholar 

  9. Q. Ahsanullahaq, J. H. Kim, and Y. B. Hahn, Nanoscale Res. Lett. 5, 669 (2010).

    Article  Google Scholar 

  10. B. Kiliç, N. Gedic, S. P. Mucur, A. S. Hergul, and E. Gür, Mater. Sci. Semicond. Process. 31, 363 (2015).

    Article  Google Scholar 

  11. K. T. Ranjit and B. Viswanathan, J. Photochem. Photobiol. 108, 79 (1997).

    Article  CAS  Google Scholar 

  12. J. A. Navio, G. Colon, M. Macias, C. Real, and M. I. Litter, Appl. Catal., A 177, 111 (1999).

  13. M. I. Litter and J. A. Navio, J. Photochem. Photobiol., A 98, 171 (1996).

    Article  CAS  Google Scholar 

  14. C. J. Brinker and M. S. Harrington, Sol. Energy Mater. 5, 159 (1981).

    Article  CAS  Google Scholar 

  15. T. M. R. Viseu and M. I. C. Ferreira, Vacuum 52, 115 (1999).

    Article  CAS  Google Scholar 

  16. Y. Suda, H. Kawasaki, T. Ueda, and T. Ohshima, Thin Solid Films 475, 337 (2005).

    Article  CAS  Google Scholar 

  17. M. Lottiaux, C. Boulesteix, and G. Nihoul, Thin Solid Films 170, 10 (1989).

    Article  Google Scholar 

  18. K. S. Yeung and Y. W. Lam, Thin Solid Films 109, 169 (1983).

    Article  CAS  Google Scholar 

  19. D. A. H. Hanaor, G. Trianni, and C. C. Sorrell, Surf. Coat. Technol. 205, 3659 (2011).

    Article  Google Scholar 

  20. Z. T. Khodair, A. A. Kamil, and Y. K. Abdalaah, Phys. B (Amsterdam, Neth.) 5, 2338 (2015).

  21. J. D. Hwang and T. H. Ho, Mater. Sci. Semicond. Process. 71, 396 (2017).

    Article  CAS  Google Scholar 

  22. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).

    Article  CAS  Google Scholar 

  23. C. Y. W. Lin, D. Channei, P. Koshy, A. Nakaruk, and C. C. Sorrell, Ceram. Int. 38, 3943 (2012).

    Article  CAS  Google Scholar 

  24. B. D. Cullity, Elements of X-Ray Diffraction (Addision-Wesley, Reading, 1956).

    Google Scholar 

  25. Y. A. K. Reddy, B. Ajitha, P. S.Reddy, Int. J. Curr. Eng. Technol. 2 (special issue), 351 (2014).

    Article  Google Scholar 

  26. P. S. Patil and L. D. Kadam, Appl. Surf. Sci. 199, 211 (2002).

    Article  CAS  Google Scholar 

  27. H. Belhadj, M. Ameri, B. Abbar, N. Moulay, A. Z. Bouyako Ameri, S. Mesbah, and Y. Al-Douri, Chin. J. Phys. 55, 1032 (2017).

    Article  CAS  Google Scholar 

  28. Tamjida Rahman Luna, PhD Thesis (Bangladesh Univ. Eng. Technol., Dhaka, 2011).

  29. W. Zhang, K. Wang, S. Zhu, Y. Li, F. Wang, and H. He, Chem. Eng. J. 155, 83 (2009). https://doi.org/10.1016/j.cej.2009.06.039

    Article  CAS  Google Scholar 

  30. J. I. Langford and A. J. C. Wilson, J. Appl. Crystallogr. 11, 102 (1978).

    Article  CAS  Google Scholar 

  31. P. Atkins and J. De Paula, Physical Chemistry (Freeman, New York, 2006).

    Google Scholar 

  32. A. Ruiz, A. Calleja, F. Espiell, A. Cornet, and J. R. Morante, IEEE Sens. J. 3, 189 (2003).

    Article  CAS  Google Scholar 

  33. M. Dongol, A. El-Denglawey, A. F. Elhady, and A. A. Abuelwafa, Curr. Appl. Phys. 12, 13 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdul Kaiyum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Abdul Kaiyum, Kabir, M.H., Ali, M.M. et al. Effects of Iron Doping on Properties of TiO2 Thin Film Prepared by Spin Coating Method. J. Surf. Investig. 15, 1225–1231 (2021). https://doi.org/10.1134/S1027451021040078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040078

Keywords:

Navigation