Skip to main content
Log in

On the Transfer of the Wiener Measure to the Set of Continuous Trajectories in the Heisenberg Group

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the paper, problems related to the theory of stochastic processes on nilpotent Lie groups are studied. In particular, a stochastic process on the Heisenberg group H3(ℝ) is considered such that the trajectories of this process, in the stochastic sense, satisfy the horizontality conditions with respect to the standard contact structure on H3(ℝ). The main result claims that the measure defined on the trajectories of this process is completely concentrated on the set C([0, t], H3(ℝ)) of continuous trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Gaveau, “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents,” Acta Math. 139 (1–2), 95–153 (1977).

    Article  MathSciNet  Google Scholar 

  2. A. Hulanicki, “The Distribution of Energy in the Brownian Motion in the Gaussian Field,” Studia Math. 56 (2), 165–173 (1976).

    Article  MathSciNet  Google Scholar 

  3. I. M. Gel’fand and A. M. Yaglom, “Integration in Functional Spaces and Its Applications in Quantum Physics,” Uspekhi Mat. Nauk 11 (1(67)), 77–114 (1956) [J. Math. Phys. 1 (1), 48–69 (1960)].

  4. D. Applebaum and S. Cohen, “Lévy Processes, Pseudo-Differential Operators and Dirichlet Forms in the Heisenberg Group,” Ann. Fac. Sci. Toulouse Math. (6) 13 (2), 149–177 (2004).

    Article  MathSciNet  Google Scholar 

  5. E. F. Sachkova, “Sub-Riemannian Balls on the Heisenberg Groups: an Invariant Volume,” Sovrem. Mat. Fundam. Napravl. 42, 199–203 (2011) [J. Math. Sci. (New York) 199 (5), 583–587 (2014)].

    Google Scholar 

  6. N. A. Sidorova, “Brownian Motion on an Embedded Manifold as the Limit of Brownian Motions with Reflection in Its Tubular Neighborhoods,” Mat. Zametki 73 (6), 947–950 (2003) [Math. Notes 73 (6), 895–899 (2003)].

    Article  Google Scholar 

  7. A. Dasgupta, S. Molahajloo, and M-W. Wong, “The Spectrum of the Sub-Laplacian on the Heisenberg Group,” Tôohoku Math. J. 63, 269–276 (2011).

    Article  MathSciNet  Google Scholar 

  8. K. Itôo and H. P. Mckean, Jr., Diffusion Processes and Their Sample Paths (Academic, Inc., Publishers, New York; Springer-Verlag, Berlin-New York 1965; Mir, Moscow, 1968).

  9. O. G. Smolyanov and E. T. Shavgulidze, Continual Integrals (Moscow State University, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  10. S. V. Mamon, “The Wiener Measure on the Heisenberg Group and Parabolic Equations,” Fundam. Prikl. Mat. 21 (4), 67–98 (2016) [in Russian].

    MathSciNet  Google Scholar 

  11. G. E. Shilov, “Integration in Infinite-Dimensional Spaces and the Wiener Integral,” Uspekhi Mat. Nauk 18 (2(110)), 99–120 (1963) [in Russian].

    MathSciNet  MATH  Google Scholar 

  12. H. H. Kuo, Gaussian Measures in Banach Spaces (Springer-Verlag, Berlin–New York, 1975; Mir, Moscow, 1979).

    Book  Google Scholar 

Download references

Acknowledgment

The author expresses his great gratitude to research supervisor E. T. Shavgulidze for setting the problem and valuable comments in the preparation of the text of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mamon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamon, S.V. On the Transfer of the Wiener Measure to the Set of Continuous Trajectories in the Heisenberg Group. Russ. J. Math. Phys. 26, 454–469 (2019). https://doi.org/10.1134/S1061920819040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920819040046

Navigation