Skip to main content
Log in

Surface tension of water droplets upon homogeneous droplet nucleation in water vapor

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A method has been proposed for determining interfacial free energy from the data of molecular dynamics simulation. The method is based on the thermodynamic integration procedure and is distinguished by applicability to both planar interfaces and those characterized by a high curvature. The workability of the method has been demonstrated by the example of determining the surface tension for critical nuclei of water droplets upon condensation of water vapor. The calculation has been performed at temperatures of 273–373 K and a pressure of 1 atm, thus making it possible to determine the temperature dependence of the surface tension for water droplets and compare the results obtained with experimental data and the simulation results for a “planar” vapor–liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Leningrad: Nauka, 1975.

    Google Scholar 

  2. Kashchiev, D., Nucleation: Basic Theory with Applications, Oxford: Butterworth-Heinemann, 2000.

    Google Scholar 

  3. Mokshin, A.V., Teor. Mat. Fiz., 2015, vol. 183, p. 3.

    Article  Google Scholar 

  4. Fokin, V.M., Zanotto, E.D., Yuritsyn, N.S., and Schmelzer, J.W.P., J. Non-Cryst. Solids, 2006, vol. 352, p. 2681.

    Article  CAS  Google Scholar 

  5. Zubarev, D.N., Neravnovesnaya statisticheskaya termodinamika (Nonequilibrium Statistical Thermodynamics), Moscow: Mir, 1980.

    Google Scholar 

  6. Zubarev, D.N. and Morozov, V.G., Statistical Mechanics of Nonequilibrium Processes. Vol. 1. Basic Concepts. Kinetic Theory, Berlin: Academic, 1996.

    Google Scholar 

  7. Fokin, V.M., Zanotto, E.D., and Schmelzer, J.W.P., J. Non-Cryst. Solids, 2003, vol. 321, p. 52.

    Article  CAS  Google Scholar 

  8. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2010, vol. 84, p. 1717.

    Article  CAS  Google Scholar 

  9. Tovbin, Yu.K. and Rabinovich, A.B., Izv. Akad. Nauk, Ser. Khim., 2010, vol. 4, p. 663.

    Google Scholar 

  10. Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.

    Google Scholar 

  11. Zheligovskaya, E.A. and Malenkov, G.G., Zh. Strukt. Khim., 2005, vol. 46, p. 284.

    Google Scholar 

  12. Malenkov, G.G., Zh. Strukt. Khim., 2006, vol. 47, p. 5.

    Google Scholar 

  13. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 136, p. 282.

    Google Scholar 

  14. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 135, p. 510.

    Google Scholar 

  15. Malenkov, G.G., Colloid J., 2010, vol. 72, p. 653.

    Article  CAS  Google Scholar 

  16. Malenkov, G.G., Zh. Strukt. Khim., 2013, vol. 54, p. 258.

    Google Scholar 

  17. Shevkunov, S.V., High Temperature, 2013, vol. 51, p. 79.

    Article  CAS  Google Scholar 

  18. Molinero, V. and Moore, E.B., J. Phys. Chem. B, 2009, vol. 113, p. 4008.

    Article  CAS  Google Scholar 

  19. Moore, E.B. and Molinero, V., Nature (London), 2011, vol. 479, p. 506.

    Article  CAS  Google Scholar 

  20. Mokshin, A.V. and Galimzyanov, B.N., J. Phys. Chem. B, 2012, vol. 116, p. 11959.

    Article  CAS  Google Scholar 

  21. Zipoli, F., Laino, T., Stolz, S., Martin, E., Winkelmann, C., et al., J. Chem. Phys., 2013, vol. 139, p. 094501.

    Article  Google Scholar 

  22. Stanley, H.E. and Teixeira, J., J. Chem. Phys., 1980, vol. 73, p. 3404.

    Article  CAS  Google Scholar 

  23. Biscay, F., Ghoufi, A., Lachet, V., and Malfreyt, P., J. Phys. Chem., 2011, vol. 115, p. 8670.

    CAS  Google Scholar 

  24. Irving, J.H. and Kirkwood, J.G., J. Chem. Phys., 1950, vol. 18, p. 817.

    Article  CAS  Google Scholar 

  25. Kirkwood, J.G. and Buff, F.P., J. Chem. Phys., 1949, vol. 17, p. 338.

    Article  CAS  Google Scholar 

  26. Stillinger, F. and Weber, T.A., Phys. Rev. B, 1985, vol. 31, p. 5262.

    Article  CAS  Google Scholar 

  27. Frenkel, D. and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, San Diego: Academic, 2007.

    Google Scholar 

  28. Mokshin, A.V., Zabegaev, S.O., and Khusnutdinov, R.M., Phys. Solid State, 2011, vol. 53, p. 570.

    Article  CAS  Google Scholar 

  29. Khusnutdinov, R.M. and Mokshin, A.V., JETP Lett., 2014, vol. 100, p. 39.

    Article  Google Scholar 

  30. Mokshin, A.V., Khusnutdinov, R.M., Novikov, A.G., Blagoveshchenskii, N.M., and Puchkov, A.V., Zh. Eksp. Teor. Fiz., 2015, vol. 148, p. 947.

    Google Scholar 

  31. Mokshin, A.V. and Galimzyanov, B.N., J. Chem. Phys., 2014, vol. 140, p. 024104.

    Article  Google Scholar 

  32. Mokshin, A.V., Galimzyanov, B.N., and Barrat, J.-L., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2013, vol. 87, p. 062307.

    Article  Google Scholar 

  33. Moody, M.P. and Attard, P., Phys. Rev. Lett., 2013, vol. 91, p. 056104.

    Article  Google Scholar 

  34. Schmelzer, J. and Mahnke, R., J. Chem. Soc., Faraday Trans., 1986, vol. 82, p. 1413.

    Article  CAS  Google Scholar 

  35. Tolman, R.S., J. Chem. Phys., 1949, vol. 17, p. 333.

    Article  CAS  Google Scholar 

  36. Vega, C. and De Miguel, E., J. Chem. Phys., 2007, vol. 126, p. 154707.

    Article  CAS  Google Scholar 

  37. White, H. and Sengers, J.V., Release on the Surface Tension of Ordinary Water Substance, Int. Association for the Properties of Water and Steam (IAPWS). 12 Int. Conf. on Properties of Water and Steam, New York: Begell House, 1995.

    Google Scholar 

  38. Ismail, A.E., Grest, G.S., and Stevens, M.J., J. Chem. Phys., 2006, vol. 125, p. 014702.

    Article  Google Scholar 

  39. Robinson, G.W., Singh, S., Zhu, S.B., and Evans, M.W., Water in Biology, Chemistry and Physics: Experimental Overviews and Computational Methodologies, Singapore: World Scientific, 1996.

    Book  Google Scholar 

  40. Chen, F. and Smith, P.E., J. Chem. Phys., 2007, vol. 126, p. 221101.

    Article  Google Scholar 

  41. Alder, B.J. and Wainwright, T.E., J. Chem. Phys., 1957, vol. 27, p. 1208.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Galimzyanov.

Additional information

Original Russian Text © B.N. Galimzyanov, A.V. Mokshin, 2017, published in Kolloidnyi Zhurnal, 2017, Vol. 79, No. 1, pp. 16–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimzyanov, B.N., Mokshin, A.V. Surface tension of water droplets upon homogeneous droplet nucleation in water vapor. Colloid J 79, 26–34 (2017). https://doi.org/10.1134/S1061933X17010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X17010057

Navigation