Skip to main content
Log in

Adsorption of a Lipophilic Drug, Felodipine, at Different Interfaces

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

In connection with the development of methods for the delivery of lipophilic drugs in a bioavailable form, we have employed an integrated approach to the investigation of the adsorption of an antihypertensive drug, felodipine, at interfaces that simulate the surfaces of different carriers. Isotherms have been plotted for felodipine adsorption from solutions in heptane (C = 2.13 × 10–5 − 4.26 × 10–4 M) at interfaces with water and silver metal, as well as for the compression of drug monolayers formed on a water surface from the heptane solutions. The quantitative characteristics of the studied felodipine layers have been determined, and their phase state and the most probable conformation of adsorbed drug molecules have been analyzed taking into account the data of molecular dynamics simulations. The phase state of the felodipine layers at the heptane/water interface is adequately described by the van Laar equation. A bilayer is formed at the silver surface. A phase transition from a gaseous state to a liquid-expanded state has been revealed for the felodipine layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lipinski, A., Am. Pharm. Res., 2002, vol. 19, p. 1894.

    Google Scholar 

  2. Yu, L.X., Amidon, G.L., Polli, J.E., Zhao, H., Mehta, M.U., Conner, D.P., Shah, V.P., Lesko, L.J., Chen, M.-L., Lee, V.H.L., and Hussain, A.S., Pharm. Res., 2002, vol. 19, p. 921.

    CAS  PubMed  Google Scholar 

  3. Shidne, S., Latest Rev., 2007, vol. 5, Paper no. 6.

  4. Jablonowska, E. and Bilewicz, R., Thin Solid Films, 2007, vol. 515, p. 3962.

    CAS  Google Scholar 

  5. Fernandez-Botello, A., Comelles, F., Alsina, M.A., Cea, P., and Reig, F., J. Phys. Chem. B, 2008, vol. 112, p. 13834.

    CAS  PubMed  Google Scholar 

  6. Casadó, A., Giuffrida, M.C., Sagristá, M.L., Castelli, F., Pujol, M., Alsina, M.A., and Mora, M., Biochim. Biophys. Acta, 2016, vol. 1858, p. 422.

    PubMed  Google Scholar 

  7. Amidon, G.L., Lennernas, H., Shah, V.P., and Crison, J.R., Pharm. Res., 1995, vol. 12, p. 413.

    CAS  PubMed  Google Scholar 

  8. Vemula, V.R., Lagishetty, V., and Lingala, S., Int. J. Pharm. Sci. Rev. Res., 2010, vol. 5, p. 41.

    CAS  Google Scholar 

  9. Sharma, D., Soni, M., Kumar, S., and Gupta, G.D., Res. J. Pharm. Tech., 2009, vol. 2, p. 220.

    CAS  Google Scholar 

  10. Malmsten, M., Surfactants and Polymers in Drug Delivery, New York: Marcel Dekker, 2002.

    Google Scholar 

  11. Malmsten, M., Soft Matter, 2006, vol. 2, p. 760.

    CAS  PubMed  Google Scholar 

  12. Rangel-Yagui, C.O., Junior, A.P., and Tavares, L.C., J. Pharm. Pharm. Sci., 2005, vol. 8, p. 147.

    CAS  PubMed  Google Scholar 

  13. Zadymova, N.M. and Ivanova, N.I., Colloid J., 2013, vol. 75, p. 159.

    CAS  Google Scholar 

  14. Patel, M.R., Latest Rev., 2007, vol. 5, p. 1.

    Google Scholar 

  15. Lawrence, M.J. and Rees, G.D., Adv. Drug Deliv. Rev., 2000, vol. 45, p. 89.

    CAS  PubMed  Google Scholar 

  16. Sintov, A.C. and Shapiro, L., J. Control. Release, 2004, vol. 95, p. 173.

    CAS  PubMed  Google Scholar 

  17. Lovelyn, C. and Attama, A.A., J. Biomater. Nanobiotechnol., 2011, vol. 2, p. 626.

    CAS  Google Scholar 

  18. Fryd, M.M. and Mason, T.G., Annu. Rev. Phys. Chem., 2012, vol. 63, p. 493.

    CAS  PubMed  Google Scholar 

  19. Arshakyan, G.A. and Zadymova, N.M., Colloid J., 2016, vol. 78, p. 688.

    Google Scholar 

  20. Gupta, A., Eral, H.B., Hattona, T.A., and Doyle, P.S., Soft Matter, 2016, vol. 12, p. 2826.

    CAS  PubMed  Google Scholar 

  21. Kelmann, R.G., Kuminek, G., Teixeira, H.F., and Koester, L.S., Int. J. Pharm., 2007, vol. 342, p. 231.

    CAS  PubMed  Google Scholar 

  22. Ragelle, H., Crauste-Manciet, S., Seguin, J., Brossard, D., Scherman, D., Arnaud, P., and Chabot, G.G., Int. J. Pharm., 2012, vol. 427, p. 452.

    CAS  PubMed  Google Scholar 

  23. Ali, M.H., Kirby, D.J., Mohammed, A.R., and Perrie, Y., J. Pharm. Pharmacol., 2010, vol. 62, p. 1646.

    CAS  PubMed  Google Scholar 

  24. Daneshpour, N., Griffin, M., Collighan, R., and Perrie, Y., J. Drug Target., 2011, vol. 8, p. 624.

    Google Scholar 

  25. Fatouros, D.G. and Antimisiaris, S.G., J. Colloid Interface Sci., 2002, vol. 251, p. 271.

    CAS  PubMed  Google Scholar 

  26. Mohammed, A.R., Weston, N., Coombes, A.G.A., Fitzgerald, M., and Perrie, Y., Int. J. Pharm., 2004, vol. 285, p. 23.

    CAS  PubMed  Google Scholar 

  27. Uchegbu, I.F. and Florence, A.T., Adv. Colloid Interface Sci., 1995, vol. 58, p. 1.

    CAS  Google Scholar 

  28. Devaraj, G.N., Parakh, S.R., Devraj, R., Apte, S.S., Rao, B.R., and Rambhau, D., J. Colloid Interface Sci., 2002, vol. 251, p. 360.

    CAS  PubMed  Google Scholar 

  29. Kumar, G.P. and Rajeshwarrao, P., Acta Pharm. Sin. B, 2011, vol. 1, p. 208.

    Google Scholar 

  30. Parmar, R.P. and Parmar, R.B., Asian J.Pharm. Tech., 2013, vol. 3, p. 52.

    Google Scholar 

  31. Moghassemi, S. and Hadjizadeh, A., J. Control. Release, 2014, vol. 185, p. 22.

    CAS  PubMed  Google Scholar 

  32. Stanishevskaya, I.E., Stoinova, A.M., Marakhova, A.I., and Stanishevskii, Ya.M., Razrab.Registr. Lekarstv. Sredstv, 2016, vol. 14, p. 66.

    Google Scholar 

  33. Juinjun, L., Weiyi, S., and Qiangbay, L., Patent CN 103933067, 2014.

  34. Söderlind, E., Wollbradt, M., and von Corswant, C., Int. J. Pharm., 2003, vol. 252, p. 61.

    PubMed  Google Scholar 

  35. http://www.drugbank.ca/drugs/.

  36. Ceccarellia, M., Germania, R., Massarib, S., Petitc, C., Nurissoc, A., Wolfenderc, J.-L., and Goracci, L., Colloids Surf. B, 2015, vol. 136, p. 175.

    Google Scholar 

  37. Sauerbrey, G., Z. Phys., 1959, vol. 155, p. 206.

    CAS  Google Scholar 

  38. Bogdanova, Yu.G., Dolzhikova, V.D., Badun, G.A., and Summ, B.D., Izv.Akad. Nauk, Ser. Khim., 2003, p. 2226.

    Google Scholar 

  39. Program Tinker 8.7, available in https://dasher.wustl.edu/tinker/.

  40. Clark, T., Computer Chemistry, Moscow: Mir, 1990.

  41. Kaplan, I.G., Mezhmolekulyarnye vzaimodeistviya. Fizicheskaya interpretatsiya, komp’yuternye raschety i model’nye potentsialy (Intermolecular Interactions. Physical Interpretation, Computer Calculations, and Model Potentials), Moscow: Binom. Laboratoriya Znanii, 2012.

  42. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya. Uchebnik (Colloid Chemistry. A Manual), Moscow: Vysshaya Shkola, 2007.

  43. Damaskin, B.B., in Uspekhi kolloidnoi khimii, Rehbinder, P.A. and Fuks, G.I., Eds., Moscow: Nauka, 1973, p. 61.

    Google Scholar 

  44. Zadymova, N.M. and Yampol’skaya, G.P., in Praktikum po kolloidnoi khimii (Practical Works on Colloid Chemistry), Kulichikhin, V.G., Ed., Moscow: Vuzovskii Uchebnik INFRA-M, 2012, p. 35.

  45. Harkins, W.D., The Physical Chemistry of Surface Films, New York: Reinhold, 1952.

    Google Scholar 

  46. Gaines, G.L., Insoluble Monolayers at Liquid-Gas Interfaces, New York: Wiley, 1966.

    Google Scholar 

  47. Mishra, T., Sahu, R.K., Lim, S.-H., Salamanca-Riba, L.G., and Bbhattracharjee, S., Mater. Chem. Phys., 2010, vol. 123, p. 540.

    CAS  Google Scholar 

  48. Wang, H., Chen, Sh., Li, L., and Jiang, Sh., Langmuir, 2005, vol. 21, p. 2633.

    CAS  PubMed  Google Scholar 

  49. Fowkes, F.M., J. Colloid Interface Sci., 1968, vol. 28, p. 493.

    CAS  Google Scholar 

  50. Fowkes, F.M., Ind. Eng. Chem. Res., 1986, vol. 60, p. 8.

    Google Scholar 

  51. Vojtechovska, J. and Kvitek, L., Acta Palacký Univ. Olomouc, 2005, Chemica 44, p. 25.

  52. Carre, A., J. Adhes. Sci. Technol., 2007, vol. 21, p. 961.

    CAS  Google Scholar 

  53. Wojciechowski, K.F., Surf. Sci., 1999, vol. 437, p. 285.

    CAS  Google Scholar 

  54. Summ, B.D. and Goryunov, Yu.V., Fiziko-khimicheskie osnovy smachivaniya i rastekaniya (Physicochemical Fundamentals of Wetting and Spreading), Moscow: Khimiya, 1976.

  55. Genzer, J. and Efimenko, K., Biofouling, 2006, vol. 22, p. 339.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed within the framework of the state budget, subject no. АААА-А16-116030250108-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zadymova.

Ethics declarations

The authors declare that they have no conflict of int-erest.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadymova, N.M., Dolzhikova, V.D. & Kharlov, A.E. Adsorption of a Lipophilic Drug, Felodipine, at Different Interfaces. Colloid J 82, 376–383 (2020). https://doi.org/10.1134/S1061933X20030151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20030151

Navigation