Skip to main content
Log in

Annual Dynamics of the Composition of Polar Lipids, Storage Lipids, and Fatty Acid Markers in the Hydrocoral Millepora dichotoma Forskål, 1775 from Coastal Waters of Vietnam

  • BRIEF NOTES
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The amount of structural and storage lipids and the composition of fatty acids (FA) in the symbiotic hydroid coral Millepora dichotoma were determined monthly throughout the year. In the first half of the year, the hydrocoral actively accumulated lipids, as indicated by a twofold increase in the content of reserve lipid classes of (waxes, triglycerides, and monoalkyl diacyl glycerides) concurrent with a relatively stable level of polar phospholipids (PL) and sterols. There was a decrease in the proportion between choline and ethanolamine glycerophospholipids (PC/PE) in July, a sharp drop in the content of triglycerides in August, and a large dispersion the PL values in September, which may be due to energy expenditures and structural changes in the colonies during spawning. The level of 22:6n-3, which is synthesized in hydrocoral from FA of plankton, was maximum in the summer, and the level of 18:4n-3, the FA marker of photosynthetic symbionts, doubled in the winter. This indicates the predominance of the heterotrophic mode of nutrition in M. dichotoma in the summer and an increased role of symbionts (an autotrophic food source) in the winter with a drop in water temperature and the onset of a stormy period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lewis, J.B., Biology and ecology of the hydrocoral Millepora on coral reefs, Adv. Mar. Biol., 2006, vol. 50, pp. 1–55.

    Article  Google Scholar 

  2. Imbs, A.B., Fatty acids and other lipids of corals: Composition, distribution, and biosynthesis, Russ. J. Mar. Biol., 2013, vol. 39, pp. 153–168. https://doi.org/10.1134/s1063074013030061

    Article  CAS  Google Scholar 

  3. Imbs, A.B., Latyshev, N.A., Dautova, T.N., and Latypov, Yu.Ya., Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae, Mar. Ecol.: Prog. Ser., 2010, vol. 409, pp. 65–75. https://doi.org/10.3354/meps08622

    Article  CAS  Google Scholar 

  4. Yamashiro, H., Oku, H., Onaga, K., et al., Coral tumors store reduced level of lipids, J. Exp. Mar. Biol. Ecol., 2001, vol. 265, pp. 171–179. https://doi.org/10.1016/S0022-0981(01)00333-1

    Article  CAS  Google Scholar 

  5. Seemann, J., Sawall, Y., Auel, H., and Richter, C., The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata,Lipids, 2013, vol. 48, pp. 275–286. https://doi.org/10.1007/s11745-012-3747-1

    Article  CAS  PubMed  Google Scholar 

  6. Ben-David-Zasow, R. and Benayahu, Y., Temporal variation in lipid, protein and carbohydrate content in the Red Sea soft coral Heteroxenia fuscescens,J. Mar. Biol. Assoc. U. K., 1999, vol. 79, pp. 1001–1006.

    Article  Google Scholar 

  7. Oku, H., Yamashiro, H., Onaga, K., et al., Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera,Coral Reefs, 2003, vol. 22, pp. 83–85.

    Article  Google Scholar 

  8. Bishop, D.G. and Kenrick, J.R., Fatty acid composition of symbiotic zooxanthellae in relation to their hosts, Lipids, 1980, vol. 15, pp. 799–804.

  9. Ward, S., Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis,Coral Reefs, 1995, vol. 14, pp. 87–90.

    Article  Google Scholar 

  10. Viladrich, N., Bramanti, L., Tsounis, G., et al., Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder, Coral Reefs, 2016, vol. 35, pp. 1033–1045. https://doi.org/10.1007/s00338-016-1440-1

    Article  Google Scholar 

  11. Grinyó, J., Viladrich, N., Diaz, D., et al., Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina, PLoS One, 2018, vol. 13, art. ID e0203308. https://doi.org/10.1371/journal.pone.0203308

  12. Yamashiro, H., Oku, H., and Onaga, K., Effect of bleaching on lipid content and composition of Okinawan corals, Fish. Sci., 2005, vol. 71, pp. 448–453. https://doi.org/10.1111/j.1444-2906.2005.00983.x

    Article  CAS  Google Scholar 

  13. Wall, C.B., Ritson-Williams, R., Popp, B.N., and Gates, R.D., Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery, Limnol. Oceanogr., 2019, vol. 64, pp. 2011–2028. https://doi.org/10.1002/lno.11166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Latyshev, N.A., Naumenko, N.V., Svetashev, V.I., and Latypov, Y.Ya., Fatty acids of reef-building corals, Mar. Ecol.: Prog. Ser., 1991, vol. 76, pp. 295–301.

    Article  CAS  Google Scholar 

  15. Yamashiro, H., Oku, H., Higa, H., et al., Composition of lipids, fatty acids and sterols in Okinawan corals, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1999, vol. 122, pp. 397–407. https://doi.org/10.1016/S0305-0491(99)00014-0

    Article  Google Scholar 

  16. Imbs, A.B., Dang, L.P.T., and Nguyen, K.B., Comparative lipidomic analysis of phospholipids of hydrocorals and corals from tropical and cold-water regions, PLoS One, 2019, vol. 14, art. ID e0215759. https://doi.org/10.1371/journal.pone.0215759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Folch, J.F., Lees, M., and Sloane Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissue, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    CAS  PubMed  Google Scholar 

  18. Imbs, A.B., Dang, L.P.T., Rybin, V.G., and Svetashev, V.I., Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam), Lipids, 2015, vol. 60, pp. 575–589. https://doi.org/10.1007/s11745-015-4021-0

    Article  CAS  Google Scholar 

  19. Imbs, A.B. and Grigorchuk, V.P., Lipidomic study of the influence of dietary fatty acids on structural lipids of cold-water nudibranch mollusk, Sci. Rep., 2019, vol. 9, art. ID 20013. https://doi.org/10.1038/s41598-019-56746-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nha Trang Sea Temperature, Global Sea Temperature. https://www.seatemperature.org/asia/vietnam/nha-trang.htm. Accessed February 10, 2020.

  21. Imbs, A.B., Demidkova, D.A., and Dautova, T.N., Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition, Mar. Biol., 2016, vol. 163, art. ID 202. https://doi.org/10.1007/s00227-016-2974-z

    Article  CAS  Google Scholar 

  22. Levas, S., Schoepf, V., Warner, M.E., et al., Long-term recovery of Caribbean corals from bleaching, J. Exp. Mar. Biol. Ecol., 2018, vol. 506, pp. 124–134. https://doi.org/10.1016/j.jembe.2018.06.003

    Article  CAS  Google Scholar 

  23. Rodrigues, L.J., Grottoli, A.G., and Pease, T.K., Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora capitata Dana, 1846 corals from Hawaii, J. Exp. Mar. Biol. Ecol., 2008, vol. 358, pp. 136–143. https://doi.org/10.1016/j.jembe.2008.02.004

    Article  CAS  Google Scholar 

  24. Imbs, A.B. and Yakovleva, I.M., Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach, Coral Reefs, 2012, vol. 31, pp. 41–53. https://doi.org/10.1007/s00338-011-0817-4

    Article  Google Scholar 

  25. Sikorskaya, T.V., Ermolenko, E.V., and Imbs, A.B., Effect of experimental thermal stress on lipidomes of the soft coral Sinularia sp. and its symbiotic dinoflagellates, J. Exp. Mar. Biol. Ecol., 2020, vol. 524, art. ID 151295. https://doi.org/10.1016/j.jembe.2019.151295

    Article  Google Scholar 

  26. Arai, T., Kato, M., Heyward, A., et al., Lipid composition of positively buoyant eggs of reef building corals, Coral Reefs, 1993, vol. 12, pp. 71–75.

    Article  Google Scholar 

  27. Figueiredo, J., Baird, A.H., Cohen, M.F., et al., Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae, Coral Reefs, 2012, vol. 31, pp. 613–619. https://doi.org/10.1007/s00338-012-0874-3

    Article  Google Scholar 

  28. Rocker, M.M., Francis, D.S., Fabricius, K.E., et al., Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia, Coral Reefs, 2019, vol. 38, pp. 215–228. https://doi.org/10.1007/s00338-019-01768-x

    Article  Google Scholar 

  29. Dalsgaard, J., St. John, M., Kattner, G., et al., Fatty acid trophic markers in the pelagic marine environment, Adv. Mar. Biol., 2003, vol. 46, pp. 225–340. https://doi.org/10.1016/S0065-2881(03)46005-7

    Article  PubMed  Google Scholar 

  30. Stambler, N., The zooxanthellae–hard-coral symbiosis, in The Algal and Cyanobacteria Symbioses, New Jersey: World Scientific, 2016, pp. 423–466.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.S. Dat (Institute of Oceanography, Vietnam Academy of Science and Technology, Vietnam Academy of Science and Technology) for the collection of biological material and to B.S. Hoang (Institute of Oceanography, Vietnam Academy of Science and Technology) for the species identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Imbs.

Ethics declarations

FUNDING

This work was supported by the Russian Foundation for Basic Research (grant no. 19-54-54002) and the Vietnam Academy of Science and Technology (grant nos. QTRU01.05/19-20 and QTRU04.05/18-19).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbs, A.B., Dang, L.T., Nguyen, K.B. et al. Annual Dynamics of the Composition of Polar Lipids, Storage Lipids, and Fatty Acid Markers in the Hydrocoral Millepora dichotoma Forskål, 1775 from Coastal Waters of Vietnam. Russ J Mar Biol 46, 221–225 (2020). https://doi.org/10.1134/S1063074020030062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074020030062

Keywords:

Navigation